IGBT - Field Stop II

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

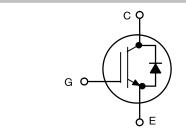
- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 10 µs Short Circuit Capability
- These are Pb-Free Devices

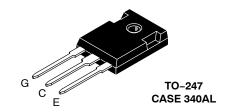
Typical Applications

- Solar Inverter
- Uninterruptible Power Inverter Supplies (UPS)
- Welding

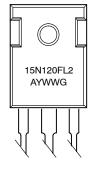
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V_{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	30 15	А
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	60	Α
Diode forward current @ Tc = 25°C @ Tc = 100°C	l _F	30 15	А
Diode pulsed current, T_{pulse} limited by T_{Jmax}	I _{FM}	60	Α
Gate-emitter voltage Transient gate-emitter voltage (T _{pulse} = 5 μs, D < 0.10)	$V_{\sf GE}$	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	294 147	W
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 500 V, $T_{J} \le 150^{\circ}C$	T _{SC}	10	μS
Operating junction temperature range	TJ	–55 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

15 A, 1200 V V_{CEsat} = 2.0 V E_{off} = 0.37 mJ

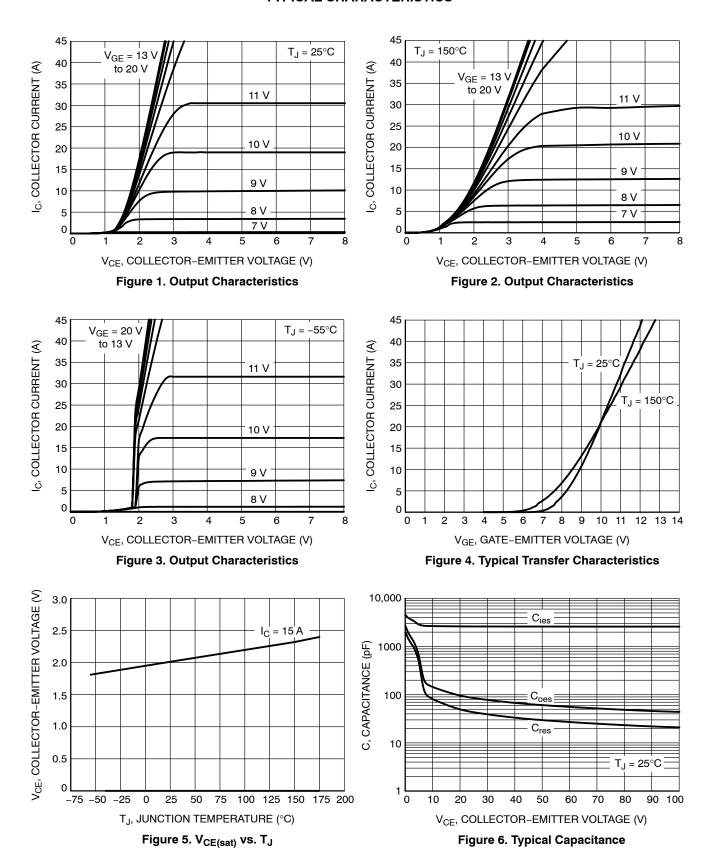
MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB15N120FL2WG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.51	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	0.81	°C/W
Thermal resistance junction-to-ambient	$R_{\theta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC				•		
Collector-emitter breakdown voltage, gate-emitter short-circuited	$V_{GE} = 0 \text{ V}, I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	1200	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 15 A V _{GE} = 15 V, I _C = 15 A, T _J = 175°C	V _{CEsat}	-	2.00 2.40	2.40 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 400 \mu A$	V _{GE(th)}	4.5	5.65	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 1200 V V _{GE} = 0 V, V _{CE} = 1200 V, T _{J =} 175°C	I _{CES}	-	_ _	0.4 4.0	mA
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	-	200	nA
Input capacitance		C _{ies}	_	2640	-	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 600 \text{ V}, I_{C} = 15 \text{ A}, V_{GE} = 15 \text{ V}$	C _{oes}	-	88	-	1
Reverse transfer capacitance		C _{res}	-	50	-	1
Gate charge total		Q_g	-	109	-	nC
Gate to emitter charge	V _{CE} = 600 V, I _C = 15 A, V _{GE} = 15 V	Q _{ge}	_	23	_	
Gate to collector charge		Q _{gc}	-	51	-	
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-on delay time		t _{d(on)}	-	64	-	ns
Rise time	$T_{J} = 25^{\circ}C$ $V_{CC} = 600 \text{ V, } I_{C} = 15 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{ V}$	t _r	-	104	-	1
Turn-off delay time		t _{d(off)}	-	132	-	1
Fall time		t _f	-	173	-	1
Turn-on switching loss		E _{on}	-	1.20	-	mJ
Turn-off switching loss		E _{off}	-	0.37	-	
Total switching loss		E _{ts}	-	1.57	-	
Turn-on delay time		t _{d(on)}	ı	62	-	ns
Rise time		t _r	ı	126	-	
Turn-off delay time	T _J = 150°C	t _{d(off)}	-	138	-	
Fall time	$V_{CC} = 600 \text{ V}, I_{C} = 15 \text{ A}$ $R_{g} = 10 \Omega$	t _f	ı	300	-	
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 0 V / 15 V$	E _{on}	-	1.45	-	mJ
Turn-off switching loss		E _{off}	-	0.76	-	
Total switching loss		E _{ts}	-	2.21	-	
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 15 A V _{GE} = 0 V, I _F = 50 A, T _J = 175°C	V _F	<u> </u>	2.00 2.30	2.60 -	V
Reverse recovery time	$T_{J} = 25^{\circ}C$	t _{rr}	-	110	-	ns
Reverse recovery charge	$I_F = 15 \text{ Å}, V_R = 200 \text{ V}$ $di_F/dt = 200 \text{ A}/\mu \text{s}$	Q _{rr}	-	0.69	-	μс
Reverse recovery current	7	I _{rrm}	_	11	-	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

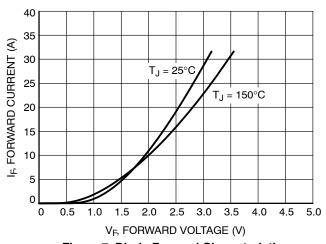


Figure 7. Diode Forward Characteristics

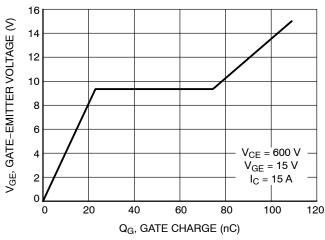


Figure 8. Typical Gate Charge

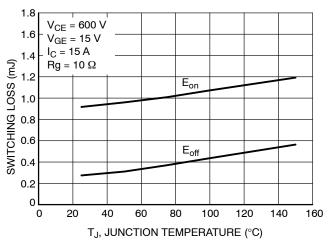


Figure 9. Switching Loss vs. Temperature

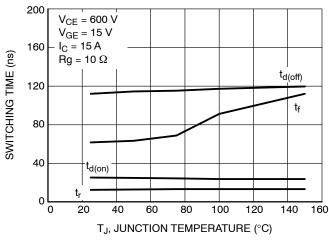


Figure 10. Switching Time vs. Temperature

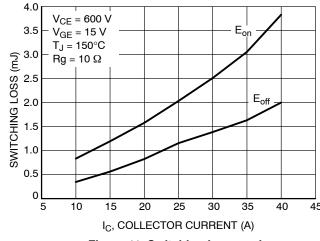


Figure 11. Switching Loss vs. I_C

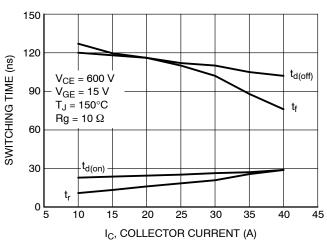


Figure 12. Switching Time vs. I_C

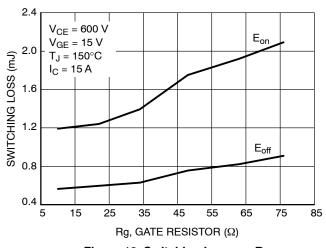


Figure 13. Switching Loss vs. Rg

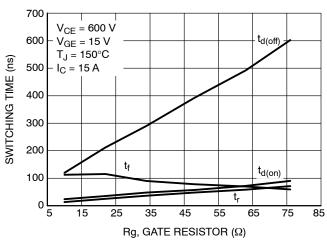


Figure 14. Switching Time vs. Rg

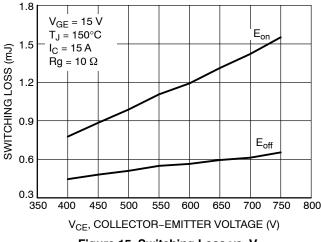


Figure 15. Switching Loss vs. V_{CE}

Figure 16. Switching Time vs. V_{CE}

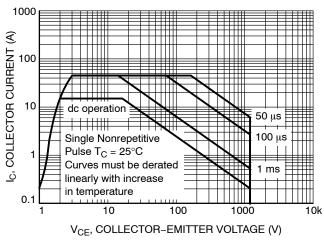


Figure 17. Safe Operating Area

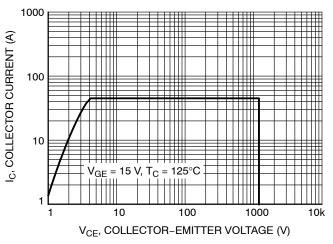


Figure 18. Reverse Bias Safe Operating Area

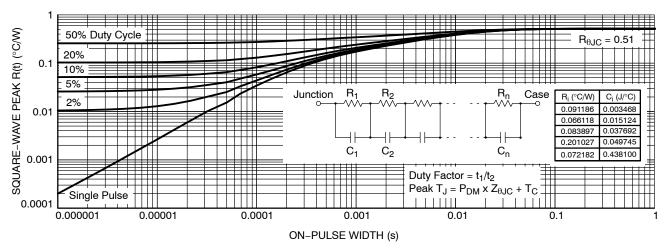


Figure 19. IGBT Die Self-heating Square-wave Duty Cycle Transient Thermal Response

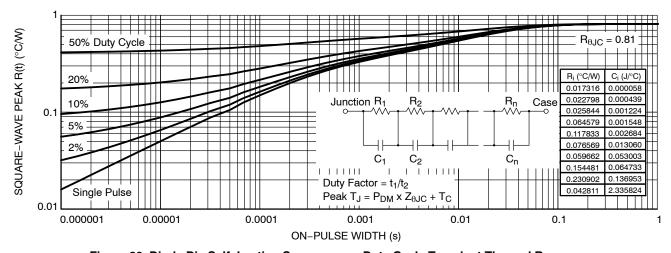
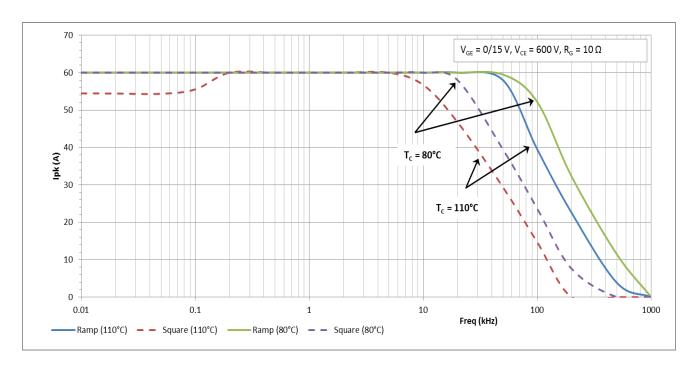



Figure 20. Diode Die Self-heating Square-wave Duty Cycle Transient Thermal Response

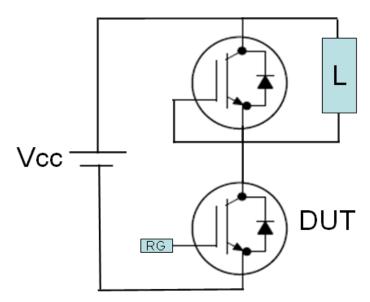


Figure 21. Test Circuit for Switching Characteristics

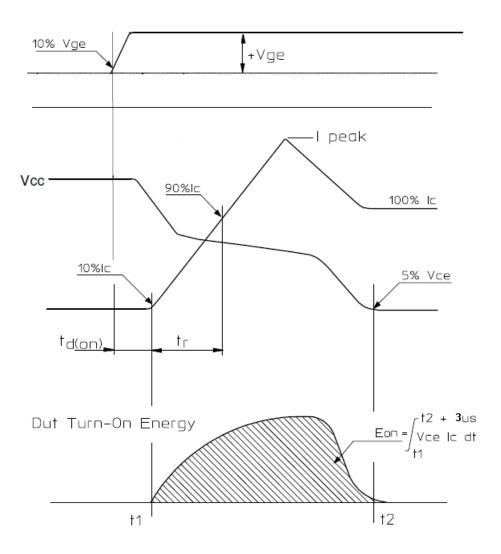


Figure 22. Definition of Turn On Waveform

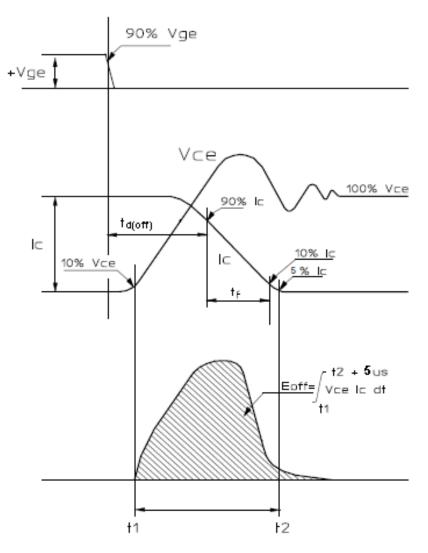
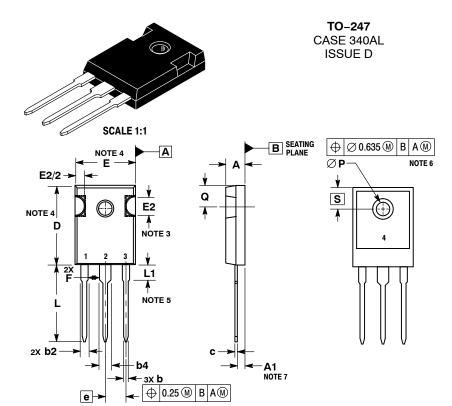
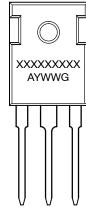



Figure 23. Definition of Turn Off Waveform

DATE 17 MAR 2017

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. SLOT REQUIRED, NOTCH MAY BE ROUNDED.

 - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY
 - LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
- ©P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.

 DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.70	5.30		
A1	2.20	2.60		
b	1.07	1.33		
b2	1.65	2.35		
b4	2.60	3.40		
С	0.45	0.68		
D	20.80	21.34		
Е	15.50	16.25		
E2	4.32	5.49		
е	5.45 BSC			
F	2.655			
L	19.80	20.80		
L1	3.81	4.32		
Р	3.55	3.65		
Q	5.40	6.20		
S	6.15 BSC			

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

	DESCRIPTION:		Printed Versions are uncontrolled except when stamped CONTROLLED	PAGE 1 OF 1	
			Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DOCUMENT NUMBER: 98AON16119F		0040N46440E	Electronic versions are uncontrolled except when accessed directly from the Document Repository.		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative