
**PRECISION 5.0 VOLT MICROPOWER
VOLTAGE REFERENCE**
ISSUE 3 - JANUARY 2003

ZRB500

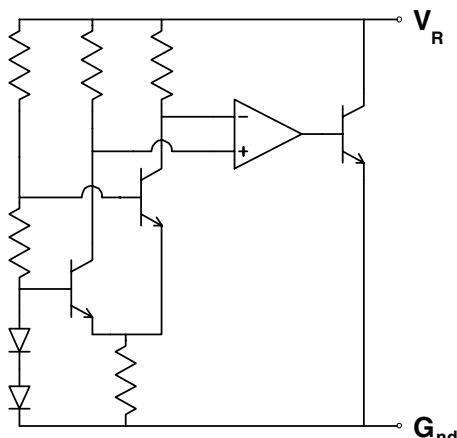
DEVICE DESCRIPTION

The ZRB500 uses a bandgap circuit design to achieve a precision micropower voltage reference of 5.0 volts. The device is available in a small outline surface mount package, ideal for applications where space saving is important.

The ZRB500 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZRB500 is recommended for operation between $50\mu\text{A}$ and 15mA and so is ideally suited to low power and battery powered applications.

Excellent performance is maintained to an absolute maximum of 25mA , however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA . Superior switching capability allows the device to reach stable operating conditions in only a few microseconds.

FEATURES


- Small outline SOT23 style package
- No stabilising capacitor required
- Typical T_c $15\text{ppm}/^\circ\text{C}$
- Typical slope resistance 0.33Ω
- $\pm 3\%$, 2% and 1% tolerance
- Industrial temperature range
- Operating current $50\mu\text{A}$ to 15mA
- Transient response, stable in less than $10\mu\text{s}$

• APPLICATIONS

- Battery powered and portable equipment.
- Metering and measurement systems.
- Instrumentation.
- Test equipment.
- Data acquisition systems.
- Precision power supplies.

SCHEMATIC DIAGRAM

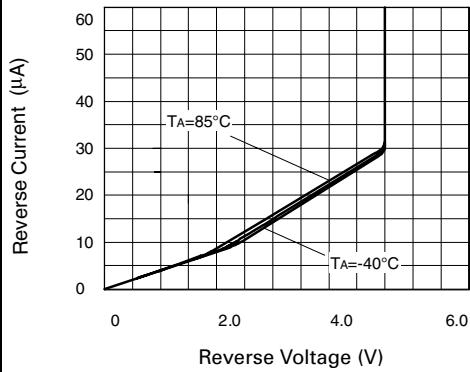
ZRB500

ABSOLUTE MAXIMUM RATING

Reverse Current	25mA
Forward Current	25mA
Operating Temperature	-40 to 85°C
Storage Temperature	-55 to 125°C

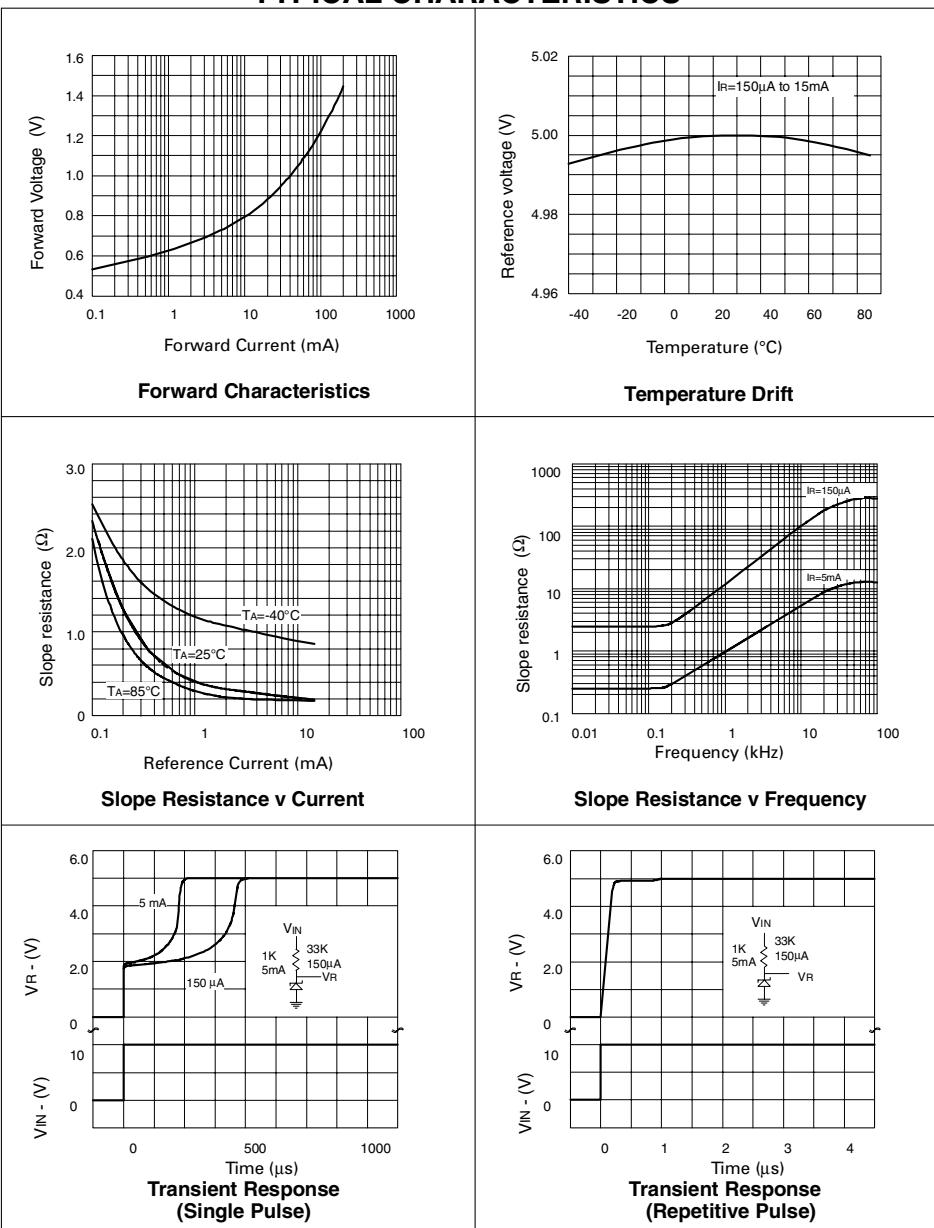
Power Dissipation (T_{amb}=25°C)
SOT23 330mW

ELECTRICAL CHARACTERISTICS


TEST CONDITIONS (Unless otherwise stated) T_{amb}=25°C

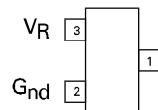
SYMBOL	PARAMETER	CONDITIONS	LIMITS			TOL. %	UNITS
			MIN	TYP	MAX		
V _R	Reverse Breakdown Voltage	I _R =150μA	4.95 4.90 4.85	5.0 5.0 5.0	5.05 5.10 5.15	1 2 3	V
I _{MIN}	Minimum Operating Current			30	50		μA
I _R	Recommended Operating Current		0.05		15		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	I _{R(min)} to I _{R(max)}		15	50		ppm/°C
R _S §	Slope Resistance			0.33	1.5		Ω
Z _R	Reverse Dynamic Impedance	I _R = 1mA f = 100Hz I _{AC} =0.1 I _R		0.4	1		Ω
E _N	Wideband Noise Voltage	I _R = 150μA f = 10Hz to 10kHz		105			μV(rms)

$$† \quad T_C = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_R \times (T_{(max)} - T_{(min)})}$$


Note: V_{R(max)} - V_{R(min)} is the maximum deviation in reference voltage measured over the full operating temperature range.

$$§ \quad R_S = \frac{V_R \text{ Change } (I_{R(min)} \text{ to } I_{R(max)})}{I_{R(max)} - I_{R(min)}}$$

ZRB500


TYPICAL CHARACTERISTICS

ZRB500

CONNECTION DIAGRAMS

SOT23 Package Suffix – F

*Top View –
Pin 1 floating or connected to pin 2*

ZRB500

ORDERING INFORMATION

Part No	Tol%	Package	Partmark
ZRB500F03	3	SOT23	50G
ZRB500F02	2	SOT23	50H
ZRB500F01	1	SOT23	50I