
Application Report
SPRAA69A–July 2005

Using the TMS320C672x Bootloader
Karen Baldwin .. DSP EEE

ABSTRACT

This application report describes the design details about the TMS320C672x
bootloader and addresses parallel flash and HPI boot to the extent relevant.

This application report contains a patch that can be downloaded from this link:
http://www-s.ti.com/sc/psheets/sprc203/sprc203.zip .

Contents
1 Introduction .. 2
2 Boot Mode Description... 3
3 Application Image Script ... 7
4 External Serial EEPROM Boot .. 13
5 External Host Processor Boot ... 13
Appendix A Calculating the CRC .. 17

List of Figures

1 Bootloader Flow... 2
2 Parallel Flash Signature Format .. 5
3 Basic Structure of Application Image Script... 7
4 Structure of Boot Table Command ... 8
5 Structure of Section Load Command .. 8
6 Structure of Section Fill Command... 9
7 Structure of Jump Command ... 9
8 Structure of Jump N Close Command ... 10
9 Structure of Enable CRC / Disable CRC Commands .. 11
10 Structure of Request CRC Command for SIngle CRC Option 12
11 Structure of Request CRC Command for Section-wise CRC Option 12
12 Flowchart: Start-Word Synchronization .. 14
13 Flowchart: Ping Op-code Synchronization... 15
14 Flowchart: Op-code Synchronization ... 16

List of Tables

1 Terms Used in This Document ... 3
2 CFGPIN0 Register Definition ... 3
3 CFGPIN1 Register Definition ... 4
4 Boot Device Pin Allocation .. 4
5 HPI Configuration Based on Device Pins ... 4
6 Parallel Flash Boot Mode Field ... 5
7 AIS Version 1.0 Supported Opcodes .. 7

8 Numeric Formats that can be used in BTEs .. 8

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 1

http://www-s.ti.com/sc/psheets/sprc203/sprc203.zip

www.ti.com

1 Introduction

Read
HCS/

?

No

Yes

Start
HPI boot

Configure HPI depending upon the state
of SPI0SOMI, SPI0SIMO and SPI0CLK

pins. Wait for application start address to
be written into address location

0x10000714 and transfer done status to
be written into address location

0x10000718. Jump PC to value at
address 0x10000714

?

Read
SPI0SOMI

YesNo

SPI0CLK
?

Read

Parallel flash
Read 1st byte from parallel flash
to decide nature of flash 8/16 bit.

Configure EMIF accordingly. Copy
first 1024 bytes from parallel flash
to the beginning of internal RAM.
Jump PC to address 0x10000004 Reserved

NoYes Yes

?

Read
SPI0SIMO

SPI0CLK
No

?

Read Yes

SPI0SIMO
?

No Read

No

?

Read
SPI0CLK

Yes

Yes

I2C 16 bit master Dev1
Start reading and

executing AIS commands

Reserved

I2C 8 bit slave Dev1
Establish link with master.

Start interpreting and
executing AIS commands

SPI 16 bit
master Dev0
Start reading
and executing
AIS commands

SPI 16 bit slave
Dev0

Establish link with
master. Start

interpreting and
executing AIS

commands

No Yes

SPI0CLK
?

Read

Introduction

The bootloader resides in the internal ROM of TMS320C672x devices. It starts from the beginning of ROM
address space 0x00000000. After reset, the device will set the program counter to the beginning of the
ROM address and begin execution of the bootloader.

The following is the list of boot modes that will be supported by the bootloader:

• HPI
• Parallel Flash
• SPI Master
• I2C Master
• SPI Slave
• I2C Slave

When booting in master mode, the bootloader reads the boot information from the slave device if and
when required. On the other hand, when booting in slave mode, the bootloader depends on the master
device to feed boot information if and when required.

Figure 1 illustrates the basic bootloader functionality:

Figure 1. Bootloader Flow

Using the TMS320C672x Bootloader2 SPRAA69A–July 2005

www.ti.com

2 Boot Mode Description

Boot Mode Description

Table 1. Terms Used in This Document

Term Description

Bootloader Bootloader Code for TMS320C672x

AIS Application Image Script

BL Boot Loader, referring to the bootloader in this text

DSP Digital Signal Processor, referring to TMS320C672x in this text

I2C Inter Integrated Circuit

OS Op-code Synchronization

POS Ping Op-code Synchronization

ROM Read Only Memory

SPI Serial Peripheral Interface

SWS Start-Word Synchronization

The selection of the following boot modes depends upon the status of boot device pins documented
below. The device captures the status of these pins on the rising edge of reset into the registers CPGPIN0
and CFGPIN1. The bootloader refers to CFGPIN0 and CFGPIN1 in order to get the status of the boot
device pins. For the sake of clarity, this text refers to the boot device pins instead of their corresponding
bit positions in one of the CFGPIN registers.

Table 2. CFGPIN0 Register Definition

CFGPIN0 bit Bit Name Corresponding Pin

31:8 Reserved Not implemented

7 PINCAP7 SPI0SOMI/SDA0

6 PINCAP6 SPI0SIMO

5 PINCAP5 SPI0CLK/SCL0

4 PINCAP4 SPI0SCS/ / SCL1

3 PINCAP3 SPI0ENA/ / SDA1

2 PINCAP2 SPI1SOMI

1 PINCAP1 SPI1SIMO

0 PINCAP0 SPI1CLK

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 3

www.ti.com

2.1 HPI Boot

Boot Mode Description

Table 3. CFGPIN1 Register Definition

CFGPIN1 bit Bit Name Corresponding Pin

31:8 Reserved Not implemented

7 PINCAP15 SPI1SCS/

6 PINCAP14 SPI1ENA/

5 PINCAP13 HCS/

4 PINCAP12 HD[0]

3 PINCAP11 HA[0]

2 PINCAP10 AFSX0

1 PINCAP9 AFSR0

0 PINCAP8 AXR0[0]

Table 4 summarizes boot mode pin configuration.

Note:

The order of different boot modes in the table is not the same as when they are detected.

Table 4. Boot Device Pin Allocation

Boot Mode Description Boot Pin Al-
location

Boot Mode Data Bits Add Bits BL1 boot SPI0SOMI SPI0SIMO SPI0CLK
Description (HCS/)

HPI (1) 0 X X X

Parallel - - 1 0 1 0
Flash (2)

SPI0 Master 8 16 1 0 0 1

SPI0 Slave 16 - 1 0 1 1

Reserved - - 1 1 0 0

I2C1 Master 8 16 1 1 0 1

Reserved - - 1 1 1 0

I2C1 Slave 8 - 1 1 1 1

(1) Additional pins used to configure the boot mode. For details, refer to Section 2.1.
(2) First byte in parallel flash gives information on the Data/Address bits. For details, refer to

Section 2.2.

Once selected, the bootloader initializes the “Bootloader HPI Jump Address Register (0x10000714)” and
“Bootloader HPI Transfer Done Register (0x10000718)” with zeros. Then, it resets the CSP Bridge and
configures the HPI to run in the desired mode depending on the state of the following pins:

Table 5. HPI Configuration Based on Device Pins

Device Pin Corresponding bit name in CFGHPI register

SPI0SOMI BYTEAD

SPI0SIMO FULL

SPI0CLK NMUX

Using the TMS320C672x Bootloader4 SPRAA69A–July 2005

www.ti.com

2.2 Parallel Flash

2.3 I2C Master

2.4 I2C Slave

Boot Mode Description

For more information on these bits, refer to the CFGHPI register description in the official TMS320C672x
specification in TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal Processors
(SPRS268).

After configuring the CFGHPI register based on the logical states of the above mentioned pins, the
bootloader enables the HPI peripheral by writing a 1 to the ENA bit in the CFGHPI register.

Then, it waits for data to be sent through the standard HPI protocol to the DSP. Once complete, the host
writes the application entry address into the memory location 0x10000714 and a 1 to address location
0x10000718 to signal the completion of HPI bootloading. The bootloader continuously polls the address
location 0x10000718; and as soon as it finds a non zero value at the address location, it jumps the
program counter to value at address 0x10000714 and begins execution of the application.

The first 8-bits on the flash device gives information about the data bits (8/16) that can be accessed from
the parallel flash simultaneously.

Figure 2. Parallel Flash Signature Format

7 6 5 4 3 2 1 0

Reserved Boot Mode

Table 6. Parallel Flash Boot Mode Field

Boot Mode Description

00 8-bit parallel flash

01 16-bit parallel flash

10 Reserved

11 Reserved

Once selected, the bootloader reads the first byte from the flash device to determine the boot mode. The
bootloader copies the first 1024 bytes of data to first 1Kbyte of internal memory and jumps the program
counter to point at address offset 0x4 in internal memory. Execution begins at this address and contains
source for user defined secondary bootloader or other application code as required.

The bootloader attempts to read a magic word (0x54495041) through I2C on address 0x50. If the magic
word is not obtained during the read call, the detection of this boot mode fails and the bootloader logic
ends up in an infinite while loop.

The bootloader supports devices obeying the ATMEL serial I2C EEPROM protocol. For more details about
ATMEL serial I2C protocol, refer to http://www.atmel.com/products/Serial/. The data burnt into the
EEPROM has to be in AIS format.

The DSP I2C peripheral has its own address set of 0x29. The host (master) is required to establish a link
with the DSP in the beginning. The host begins transmitting data in application image script (AIS) format.
For details about link establishment, refer to Section 5. For details about, AIS refer to Section 3.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 5

http://www.atmel.com/products/Serial/

www.ti.com

2.5 SPI Master

2.6 SPI Slave

Boot Mode Description

The bootloader attempts to read a magic word (0x54495041) through SPI. If the magic word is not
obtained during the read call, the detection of this boot mode fails and the bootloader logic ends up in an
infinite while loop.

The bootloader supports devices obeying the ATMEL serial SPI EEPROM protocol. For more details
about ATMEL serial SPI protocol, refer to http://www.atmel.com/products/Serial/. The data burnt into the
EEPROM has to be in AIS format.

The host (master) is required to establish a link with the DSP in the beginning. The host begins
transmitting data in AIS format. For details about link establishment, refer to Section 5. For details about
AIS, refer to Section 3.

Using the TMS320C672x Bootloader6 SPRAA69A–July 2005

http://www.atmel.com/products/Serial/

www.ti.com

3 Application Image Script

MAGIC − 0x54495041

Command 1

. . .

Command 2

Command N

Op−code

Optional data

. . .

3.1 Boot Table Command

Application Image Script

The bootloader accepts boot information in the form of a script, called application image script (AIS).
Application image script is a Texas Instruments proprietary application image transfer format. This script is
a binary file consisting of a script header followed by various commands that are interpreted and executed
by the bootloader. Each command contains an op-code, followed by optional additional data required to
execute the op-code. The bootloader supports version AIS Version 1.0.

The AIS starts with a magic word (0x54495041), followed by a series of commands shown in Figure 3.
Each command, in turn, consists of an op-code followed by optional additional data.

Figure 3. Basic Structure of Application Image Script

The bootloader only accepts data in AIS format for all modes leaving parallel flash and HPI. The following
sections define each command with appropriate op-code, structure, and placement in AIS. The following
table lists the various opcodes that are supported by AIS 1.0:

Table 7. AIS Version 1.0 Supported Opcodes

Opcode Value

Section Load 0x58535901

Request CRC 0x58535902

Enable CRC 0x58535903

Disable CRC 0x58535904

Jump 0x58535905

Jump Close 0x58535906

Boot table 0x58535907

Start Over 0x58535908

Reserved 0x58535909

Section Fill 0x5853590A

Ping 0x5853590B

Boot table commands are a simple mechanism that enables the user to write 8-bit, 16-bit, or 32-bit data to
any address in DSP address space. There is a provision to provide delay after the memory write happens.
This can be used for memory mapped register write to take effect. Boot table commands are used to
configure various peripherals of DSP which includes PLL and EMIF at minimum and can configure more
peripherals, if required.

When the DSP is powered-up, the PLL multiplier is bypassed and PLL Divider D1 is set to divide-by-1. As
a result, the CPU is clocked at the same frequency as connected crystal/CLK IN, which is generally very
low. This results in slow communication and high boot time. In order to reduce boot time, PLL and EMIF
registers should be configured at the very beginning of boot process. For this reason, all boot table
commands are placed at the beginning of AIS as shown in Figure 4.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 7

www.ti.com

MAGIC − 0x54495041

BT command

. . .

More BT commands

BOOT_TABLE op−code

Optional data

. . .

Other commands

. . .

0x58535907

<ADDRESS>

<TYPE>

<DATA>

<SLEEP>

3.2 Section Load Command

BT commands

SL commands

. . .

More SL commands

SECTION_LOAD op−code

Optional data

. . .

Other commands

. . .

0x58535901

<ADDRESS>

<DATA>

<SIZE>

MAGIC − 0x54495041

. . .

Application Image Script

Figure 4. Structure of Boot Table Command

Each boot table command consists of BOOT_TABLE (0x58535907) op-code, followed by four words of
additional data as shown. BOOT_TABLE entries in AIS are explained using the following representation:
<Address> = <Data><Type>: : <Sleep>

The above command instructs the bootloader to write <Data> to address <Address> in DSP address
space and then sleep for <Sleep> * CPU clocks unassigned. The data-type field <Type> decides whether
<Data> is written as 8-bit (B), 16-bit (S) or 32-bit (I). All other fields are in any numeric format as described
in the Table 8.

Table 8. Numeric Formats that can be used in BTEs

Name Format Example 1 Example 2 Example 3

Hexadecimal 0[xX][0-9a-fA-F]+ 0x1234abCD 0x1000 0X5a

Hexadecimal [0-9a-fA-F]+[hH] 1234ABCDh 1000H 5ah

Octal 0[0-7]+ 02215125715 010000 0132

Decimal [0-9]+ 305441741 4096 90

Section load commands are used to load a particular chunk of code/data to DSP memory. All initialized
sections (such as .text) are loaded to DSP memory using Section load commands. These commands are
placed after all Boot table commands in AIS.

Figure 5. Structure of Section Load Command

Each Section Load command consists of SECTION_LOAD (0x58535901) op-code, followed by section’s
start address, size and contents.

Using the TMS320C672x Bootloader8 SPRAA69A–July 2005

www.ti.com

3.3 Section Fill Command

BT commands

SL/SF commands

. . .

More SL/SF commands

SECTION_FILL op−code

Optional data

. . .

Other commands

. . .

0x5853590A

<ADDRESS>

<TYPE>

<SIZE>

MAGIC − 0x54495041

SF command

<PATTERN>

3.4 Jump Command

BT commands

SL/SF commands

. . .

More SL/SF commands

JUMP op−code

Optional data

. . .

Other commands

. . .

0x5853590A

<ADDRESS>

MAGIC − 0x54495041

JMP command

Application Image Script

Section Fill command are used when a particular section is filled with a specific pattern. For example, a
section that contains all zeros is initialized with Section Fill command. These commands are placed
anywhere where a regular Section Load command occurs.

Figure 6. Structure of Section Fill Command

Each Section Fill command consists of SECTION_FILL (0x5853590A) op-code, followed by section’s start
address, size, pattern-type (8/16/32-bit) and pattern to be filled.

This command instructs the DSP to jump to start address of earlier loaded application. It consists of JUMP
(0x58535905) op-code, followed by the jump address.

Figure 7. Structure of Jump Command

This command may be used to execute code that has been previously loaded through Section Load and
Section Fill commands. It could be used to implement a secondary load process or to execute application
code necessary to setup other processes before remainder of code/data is loaded. Once, the JUMP
command is issued, execution will begin at the indicated start address. When execution is over, it is the
responsibility of the application code to execute a return instruction. This enables return of control to the
on-chip bootloader. Normal AIS interpretation and execution will continue at that point.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 9

www.ti.com

3.5 Jump N Close Command

BT commands

SL/SF commands

JUMP_CLOSE op−code

Optional data

. . .

0x58535906

<ADDRESS>

MAGIC − 0x54495041

JNC command

3.6 CRC Options

Application Image Script

This command is used at the end of the boot process to start execution of loaded application. This
command instructs the DSP to terminate boot process and jump to start address of loaded application.

Figure 8. Structure of Jump N Close Command

The command is placed at the end of AIS, after all other commands. It consists of JUMP_CLOSE
(0x58535906) op-code, followed by the start address of the application where the bootloader should jump.

There is a possibility of error in communication when DSP is booting up. Execution of a corrupted
application image may result in instability or malfunction. In order to avoid such problems, AIS supports
opcodes to verify the validity of data loaded through Section Load / Section Fill commands. A proprietary
32-bit CRC computation algorithm is used for verification. The three options available are:

No CRC

With this option, CRC computation is disabled and there is no way to detect or correct any error.

Single CRC

With this option, single CRC will be computed for all the sections. Verification will be done at the end, just
before Jump N Close command. In case of error, all the sections are loaded again. CRC will be
recalculated and re-verified again at the end.

Section-Wise CRC

With this option, CRC is computed for each section. Verification is done at the end of each section. The
section is reloaded in case of error.

Using the TMS320C672x Bootloader10 SPRAA69A–July 2005

www.ti.com

BT commands

SL/SF commands

ENABLE_CRC op−code

Optional data

. . .

0x58535903

(No optional data)

MAGIC − 0x54495041

JNC command

CRC command

SL/SF commands (No optional data)Optional data

JNC command
. . .

MAGIC − 0x54495041

BT commands

CRC command DISABLE_CRC op−code 0x58535904

Application Image Script

3.6.1 Enable/Disable CRC Commands

These commands are used to enable/disable computation of CRC for sections loaded through Section
Load / Section Fill commands.

Figure 9. Structure of Enable CRC / Disable CRC Commands

These commands consist of only a single ENABLE_CRC (0x58535903) or DISABLE_CRC (0x58535904)
op-code. There is no additional data required.

3.6.2 Request CRC Command

This command is used to request and validate current value of CRC computed by DSP. Using this
command requires that the Enable CRC command is issues earlier in the AIS stream. This command
consists of REQUEST_CRC(0x58535902) op-code, followed by the expected CRC value and a
seek-value. The CRC of loaded/filled section(s) are compared wit the expected CRC value. If the CRC is
correct, seek-value is ignored and execution shall continue from next command.

A mismatch in CRC indicates that the data loaded to the DSP memory using earlier Section Load/ Section
Fill commands is corrupted. In order to load data again, AIS has to be re-executed from the last error-free
point (i.e last valid command). The seek-value is expressed in bytes, and is a negative number that is
added to the current address in AIS. By adding the seek-value, the AIS stream is then pointed back to the
last known good state and AIS interpretation continues from this address.

When operating in master mode, CRC read/compare/seek adjustment are performed automatically by the
bootloader. In slave mode operation, a REQUEST_CRC command results in the bootloader transmitting
the current CRC value calculated by the DSP to the Host. The Host may then send a Start-Over command
as described in next section. On receiving the Start-Over command the DSP knows that CRC error has
occurred. It resets its CRC computation and becomes ready to accept more command from the host. The
next command expected by the DSP is a PING command, followed by Host/slave mode exchange
(XMT_START/RECV_START).

Please refer to Appendix A for code used to calculate CRC values.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 11

www.ti.com

BT commands

First SL/SF command

REQUEST_CRC op−code

Optional data

. . .

0x58535902

MAGIC − 0x54495041

JNC command

ENA CRC command

More SL/SF commands

. . .

REQ CRC command

<CRC>

<SEEK>

BT commands

SL/SF command

REQUEST_CRC op−code

Optional data

. . .

0x58535902

MAGIC − 0x54495041

JNC command

ENA CRC command

REQ CRC command

<CRC>

<SEEK>

SL/SF, REQ CRC
commands

. . .

. . .
commands

More SL/SF, REQ CRC

Application Image Script

Figure 10. Structure of Request CRC Command for SIngle CRC Option

For Single CRC option, this command appears only once in AIS after the last Section Load / Section Fill
command. The seek value is interpreted as a negative number, which when added to the current offset in
AIS, will make offset point to start of the first Section Load / Section Fill command as shown.

Figure 11. Structure of Request CRC Command for Section-wise CRC Option

For Section-wise CRC option, this command appears after each Section Load / Section Fill commands.
The seek value is interpreted as a negative number, which when added to current offset in AIS, will make
offset point to start of the previous Section Load / Section Fill command as shown.

3.6.3 Start-over Command

The Start-over command consists of a STARTOVER (0x58535908) op-code with no additional data. This
instructs the bootloader to reset its computed CRC value to 0.

It has to be issued by the host on its own when it detects a CRC mismatch for slave modes. For master
modes, this is taken care by the bootloader state machine.

Using the TMS320C672x Bootloader12 SPRAA69A–July 2005

www.ti.com

4 External Serial EEPROM Boot

5 External Host Processor Boot

5.1 AIS Interpreter on the Host

5.2 Start-Word Synchronization

External Serial EEPROM Boot

The bootloader contains the AIS interpreter for parsing the data read from the serial EEPROM. After
parsing the data retrieved, the bootloader takes appropriate actions in order to execute the opcode.

When booting from the external host processor, the host processor acts as a boot master and the DSP
acts as slave. Since the DSP does not have direct access to AIS, the host processor has to transfer it to
the DSP through a well-defined protocol explained in following sections. An AIS interpreter is required on
the host processor to control this transfer.

The AIS interpreter on the host is responsible for transferring the AIS to the DSP. For this, it has to
understand the transfer protocol and implement the required handshake mechanism. The AIS interpreter
on host directly interacts with the bootloader on the DSP.

Note:

For the sake of simplicity, AIS interpreter on host will be simply referred to as ‘host’ and
bootloader on TMS320C672x devices as ‘DSP’ in this section.

It is important to have a successful link establishment between the DSP and the host before starting
transfer of AIS. Once the link is established, AIS is transferred to DSP. The whole process is divided into
three phases:
• start-word synchronization (SWS)
• ping op-code synchronization (POS)
• op-code synchronization (OS)

Start-Word Synchronization (SWS) is the default power-up state and is responsible for initiating
communication between the DSP and the host.

The bootloader tries to read the transmit start-word (XMT_START) from the host. After receiving it, the
DSP acknowledges by sending receiver-start-word (RECV_START) to the host.

The XMT_START and RECV_START can be 8-bit, 16-bit, or 32-bit depending on the boot mode used.
The following table shows corresponding values for different boot modes:

Boot Mode XMT_START RECV_START

8-bit 0x58 0x52

16-bit 0x5853 0x5253

32-bit 0x58535441 0x52535454

The host must keep on sending XMT_START until it receives RECV_START from the DSP. This process
initiates communication between the DSP and the host. Figure 12 shows the flowchart of how SWS is
implemented on the host.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 13

www.ti.com

Start

Send XMT_START

Receive a word

Is it
RECV_START

?

Start

No

Yes

XMT_START

XMT_START

XMT_START

RECV_START

Host DSP

5.3 Ping Op-code Synchronization

External Host Processor Boot

Figure 12. Flowchart: Start-Word Synchronization

Ping Op-code Synchronization (POS) is used to make sure that the boot mode selected is correct and the
communication link between the host and the DSP is reliable.

After successful SWS,

• DSP waits for the host to send PING_DEVICE (0x5853590B) op-code. On receiving it, DSP
acknowledges it by sending RECV_PING_DEVICE (0x5253590B) to the host.

• The host then sends a number N to the DSP and gets back the same number from the DSP as
acknowledgment.

• The host shall then start sending numbers 1 to N to DSP and will receive the same sequence as
acknowledgment.

POS is implemented as a simple bootloader command and it can be issued any time during AIS transfer
to check reliable communication. If POS fails at any point, the DSP and the host are required to start all
over again from SWS. Figure 13 shows the flowchart of how POS is implemented on the host.

Using the TMS320C672x Bootloader14 SPRAA69A–July 2005

www.ti.com

Start

Send PING_DEVICE
and receive a word

SWS
No

Yes

and receive a word
Send N

N
?

Is it

Yes

SWS
No

2,3,...,N−1

Is it
1
?

SWS
No

Send 1
and receive a word

Yes

Is it
N
?

No

Send N
and receive a word

SWS

End

PING_DEVICE

RECV_PING_DEVICE

N (2)

N (2)

1

2

1

2

Host

Is it
RECV_PING_

DEVICE?

DSP

5.4 Op-code Synchronization (OS) for Serial Slave Modes

External Host Processor Boot

Figure 13. Flowchart: Ping Op-code Synchronization

After a successful link establishment, the DSP and the host are ready to transfer AIS commands. Since all
AIS commands start with an op-code, the DSP waits to receive one of valid op-codes from the host. For
serial slave modes on receiving an opcode, the DSP acknowledges by sending corresponding RECV
opcode. This process is referred to as opcode synchronization.

All opcodes (including PING_DEVICE) transmitted by the host to the DSP are of the form 0x585359##,
where ## varies for individual op-codes. DSP acknowledges each op-code by corresponding RECV
op-code. RECV op-codes are generated from the original op-codes by changing the most significant byte
to 0x52. Thus, they are of the form 0x525359##.

SPRAA69A–July 2005 Using the TMS320C672x Bootloader 15

www.ti.com

Start

Send <0p−code>
and receive a word

Is it
RECV_

<op−code>
?

End

No

Yes

<op−code>

RECV_<op−code>

<op−code>

<op−code>

Host DSP

External Host Processor Boot

Not getting a correct response (RECV op-code) from DSP means that the DSP is busy executing an
earlier op-code. The host should continue sending the op-code until successfully acknowledged by the
DSP. Figure 14 shows the flowchart of how OS is implemented on the host.

Figure 14. Flowchart: Op-code Synchronization

DSP starts executing the op-code only after the OS is finished. If more information is required in order to
execute the op-code, the DSP gets it from the host before starting execution. The host is required to
understand each op-code and supply required data to the DSP from the AIS.

The DSP keeps on executing commands from the host until it gets a Jump N Close (JNC) command,
using Op-code synchronization at the beginning of each command. On getting JNC command, the DSP
closes the peripheral used for booting, terminates the boot process and jumps to the address specified
along with the op-code.

Using the TMS320C672x Bootloader16 SPRAA69A–July 2005

www.ti.com

Appendix A Calculating the CRC

Appendix A

The CRC calculated to process the REQUEST_CRC command is based on the following algorithm,
where “data_ptr” points to the first data element in the current section, “section_size” is the size of
the section expressed in 8bit bytes, and “crc” is current crc value.

unsigned int BL_updateCRC(unsigned int *data_ptr, unsigned int section_size, unsigned int
crc)
{

unsigned int n, crc_poly = 0x04C11DB7; /* CRC - 32 */
unsigned int msb_bit;
unsigned int residue_value;
int bits;

for(n = 0; n < (section_size>>2); n++)
{

bits = 32;
while(--bits >= 0)
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ((*data_ptr >> bits) & 1);
if (msb_bit)

crc = crc ^ crc_poly;
}
data_ptr ++;

}

switch(section_size & 3)
{

case 0:
break;

case 1:
residue_value = (*data_ptr & 0xFF) ;
bits = 8;
break;

case 2:
residue_value = (*data_ptr & 0xFFFF) ;
bits = 16;
break;

case 3:
residue_value = (*data_ptr & 0xFFFFFF) ;
bits = 24;
break;

}

if(section_size & 3)
{

while(--bits >= 0)
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ((residue_value >> bits) & 1);
if (msb_bit) crc = crc ^ crc_poly;

}
}
return(crc);

}

SPRAA69A–July 2005 Calculating the CRC 17

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Boot Mode Description
	2.1 HPI Boot
	2.2 Parallel Flash
	2.3 I2C Master
	2.4 I2C Slave
	2.5 SPI Master
	2.6 SPI Slave

	3 Application Image Script
	3.1 Boot Table Command
	3.2 Section Load Command
	3.3 Section Fill Command
	3.4 Jump Command
	3.5 Jump N Close Command
	3.6 CRC Options

	4 External Serial EEPROM Boot
	5 External Host Processor Boot
	5.1 AIS Interpreter on the Host
	5.2 Start-Word Synchronization
	5.3 Ping Op-code Synchronization
	5.4 Op-code Synchronization (OS) for Serial Slave Modes

	Appendix A Calculating the CRC

