
0

Standard Products

UT699 LEON 3FT/SPARCTM
V8 MicroProcessor

Advanced Users Manual
March 2, 2009
www.aeroflex.com/LEON

1

Table of Contents

1.0 INTRODUCTION 8
1.1 Scope 8
1.2 Architecture 9
1.3 Memory map 11
1.4 Interrupts 12
1.5 Signals 13
1.6 Clocking 16
 1.6.1 Clock inputs 16
 1.6.2 Clock gating 16

 1.7 Reset Operations 16

2.0 LEON 3FT SPARC V8 32-bit MICROPROCESSOR 17
2.1 Overview 17

2.1.1 Integer unit 17
2.1.2 Cache sub-system 17
2.1.3 Floating-point unit 17
2.1.4 On-chip debug support 18
2.1.5 Interrupts 18
2.1.6 AMBA interface 18
2.1.7 Power-down mode 18

2.2 LEON 3FT integer unit 18
2.2.1 Overview 18
2.2.2 Instruction pipeline 20
2.2.3 SPARC implementor’s ID 20
2.2.4 Divide instructions 20
2.2.5 Multiply instructions 21
2.2.6 Hardware breakpoints 21

 2.2.7 Instruction trace buffer 22
 2.2.8 Processor configuration register 22
 2.2.9 Exceptions 24
 2.2.10 Single vector trapping (SVT) 25
 2.2.11 Address space identifiers (ASI) 25
 2.2.12 Power-down 25

2.2.13 Processor reset operation 26
2.2.14 Integer unit SEU protection 26
2.2.15 Data scrubbing 27

2.3 Floating-point unit 27
2.4 Cache sub-systems 28

2.4.1 Overview 28
2.4.2 Instruction cache 28
2.4.3 Data code 28
2.4.4 Write buffer 28
2.4.5 Instruction and data cache tags 29
2.4.6 Cache flushing 30

2

2.4.7 Diagnostic cache access
 2.4.7.1 Diagnostic reads of instruction and data cache 30

 2.4.7.1 Diagnostic writes to instruction and data cache 31
2.4.8 Cache control register 31
2.4.9 Error protection 33
2.4.10 Cache configuration registers 33
2.4.11 Software consideration 34

2.5 Memory management unit 34
2.5.1 MMU ASI usage 35
2.5.2 Cache operation 35
2.5.3 MMU registers 35
2.5.4 Translation Look-Aside Buffer (TLB) 35

2.6 RAM usage 35
2.6.1 Integer unit register file 35
2.6.2 Floating Point Unit (FPU) register file 36
2.6.3 Cache memories 36

 2.6.3.1 Instruction cache tags 36
 2.6.3.2 Data cache tags 37
 2.6.3.3 Instruction and data cache data memory 38

3.0 MEMORY CONTROLLER with EDAC 39
3.1 Overview 39
3.2 PROM access 40
3.3 Memory mapped I/O 40
3.4 SRAM access 40
3.5 8-bit and 16-bit PROM and SRAM access 40
3.6 8-bit and 16-bit I/O access 42
3.7 Burst cycles 42
3.8 SDRAM access 42

3.8.1 General 42
3.8.2 Address mapping 43
3.8.3 Initialization 43
3.8.4 Configurable SDRAM timing parameters 43

3.9 Refresh 43
3.9.1 SDRAM commands 43
3.9.2 Read cycles 43
3.9.3 Write cycles 43
3.9.4 Address bus 44
3.9.5 Data bus 44
3.9.6 Clocking 44
3.9.7 Initialization 44

3.10 Memory EDAC 44
3.11 Using BRDY 45
3.12 Access errors 45
3.13 Attaching an external DRAM controller 45
3.14 Registers 45

 3

 3.14.1 Memory configuration register 1 (MCFG1) 46
 3.14.2 Memory configuration register 2 (MCFG2) 47
 3.14.3 Memory configuration register 3 (MCFG3) 49

3.15 Vendor and device identifiers 50
3.16 PROM, SRAM, and memory mapped I/O timing diagrams 50
3.17 SDRAM timing diagrams 63

4.0 AHB STATUS REGISTERS 65
4.1 Overview 65
4.2 Operation 65
4.3 Registers 65

5.0 INTERRUPT CONTROLLER 66
5.1 Overview 66
5.2 Operation 66

 5.2.1 Interrupt prioritization 66
 5.2.2 Interrupt allocation 67

5.3 Registers 67
5.3.1 Interrupt level register 68
5.3.2 Interrupt pending register 68
5.3.3 Interrupt force register 68
5.3.4 Interrupt clear register 69
5.3.5 Interrupt mask register 69

6.0 UART with APB INTERFACE 70
6.1 Overview 70
6.2 Operation 70

6.2.1 Transmitter operation 71
6.2.2 Receiver operation 71

6.3 Baud-rate generation 71
6.3.1 Loop back mode 71
6.3.2 Interrupt generation 72

6.4 UART registers 72
6.4.1 UART data register 72
6.4.2 UART status register 72
6.4.3 UART control register 73
6.4.4 UART scaler register 74

7.0 TIMER UNIT 75
7.1 Overview 75
7.2 Operation 75
7.3 Registers 76

8.0 GENERAL PURPOSE I/O PORT 80
8.1 Overview 80

4

8.2 Operation 82
8.3 Registers 82

 8.3.1 GPIO port data value register 81
 8.3.2 GPIO port data output register 81
 8.3.3 GPIO port data direction register 81
 8.3.4 GPIO interrupt mask register 82
 8.3.5 GPIO interrupt polarity register 82
 8.3.6 GPIO interrupt edge register 83

9.0 PCI TARGET / MASTER UNIT 84
9.1 Overview 84
9.2 Operation 84

9.2.1 PCI target unit 84
9.2.2 PCI master unit 85
9.2.3 Burst transactions 85
9.2.4 Byte timing 85

9.3 PCI target interface 85
9.4 PCI target configuration space header register 86
9.5 PCI target map registers 91

 9.5.2 PAGE1 register 92
9.6 PCI master interface 92

 9.6.1 PCI configuration cycles 93
 9.6.2 I/O cycles 93
 9.6.3 PCI memory cycles 93

9.7 PCI host operation 94
9.8 Registers 94
9.9 Vendor and device identifiers 96

10.0 DMA CONTROLLER for the GRPCI INTERFACE 97
10.1 Introduction 97
10.2 Operation 97
10.3 Registers 98
10.4 Vendor and device identifiers 99

11.0 SpaceWire INTERFACE 100
11.1 Overview 100
11.2 Operations 101

11.2.1 Overview 101
11.2.2 Protocol support 101

11.3 Link interface 102
11.3.1 Link interface FSM 102
11.3.2 Transmitter 102
11.3.3 Receiver 103
11.3.4 Time interface 103
11.3.5 Basic functionality 104

11.4 Receiver DMA engine 104

 5

11.4.1 Basic functionality 104
11.4.2 Setting up the GRSPW for reception 104
11.4.3 Setting up the descriptor table address 105
11.4.4 Enabling descriptors 105
11.4.5 Setting up the DMA control register 107
11.4.6 The effect to the control bits during reception 107
11.4.7 Address recognition and packet handling 107
11.4.8 Status bits 107
11.4.9 Error handling 108
11.4.10 Open packet mode 108

11.5 Transmitter DMA engine 108
11.5.1 Basic functionality 108
11.5.2 Setting up the GRSPW for transmission 108
11.5.3 Enabling descriptors 108
11.5.4 Starting transmissions 109
11.5.5 The transmission process 111
11.5.6 The descriptor table address 111
11.5.7 Error handling 111

11.6 RMAP 111
11.6.1 Fundamentals of the protocol 112
11.6.2 Implementation 112
11.6.3 Write commands 113
11.6.4 Read commands 113
11.6.5 RMW commands 113
11.6.6 Control 113

11.7 AMBA interface 116
11.7.1 APB slave interface 116
11.7.2 AHB master interface 116

11.8 Registers 116

12.0 CAN-2.0 Interface 127
12.1 Overview 127
12.2 AHB interface 127
12.3 BasicCan mode 128

12.3.1 BasicCan register map 129
12.3.2 Control register 129
12.3.3 Command register 130
12.3.4 Status register 130
12.3.5 Interrupt register 136
12.3.6 Transmit buffer 131
12.3.7 Receiver buffer 131
12.3.8 Acceptance filter 131

12.4 PeliCAN mode 132
12.4.1 PeliCAN register map 132
12.4.2 Mode register 133
12.4.3 Command register 133

6

12.4.4 Status register 134
12.4.5 Interrupt register 134
12.4.6 Interrupt enable register 135
12.4.7 Arbitration lost capture register 135
12.4.8 Error code capture register 135
12.4.9 Error warning limit register 136
12.4.10 RX error counter register (address 14) 136
12.4.11 TX error counter register (address 15) 136
12.4.12 Transmit buffer 136
12.4.13 Receive buffer 140
12.4.14 Acceptance filter 142
12.4.15 RX message center 144

12.5 Common registers 144
12.5.1 Clock divider register 144
12.5.2 Bus timing 0 145
12.5.3 Bus timing 1 145

12.6 Design considerations 145

13.0 ETHERNET MEDIA ACCESS CONTROLLER (MCA) 146
13.1 Overview 146
13.2 Operation 146

13.2.1 System overview 146
13.2.2 Protocol support 147
13.2.3 Hardware requirements 147
13.2.4 Transmitter DMA interface 147
13.2.5 Setting up a descriptor 147
13.2.6 Starting transmissions 148
13.2.7 Descriptor handling after transmission 149
13.2.8 Setting up the data for transmission 149
13.2.9 Receiver DMA interface 149
13.2.10 Setting up descriptors 149
13.2.11 Starting reception 150
13.2.12 Descriptor handling after reception 151
13.2.13 Reception with AHB errors 151
13.2.14 MDIO interface 151
13.2.15 Media independent interfaces 151
13.2.16 Software drivers 151

13.3 Registers 152
13.3.1 Vendor and device identifiers 156

14.0 HARDWARE DEBUG SUPPORT 157
14.1 Introduction 157
14.2 Operation 157
14.3 AHB trace buffer 158
14.4 Instruction trace buffer 159
14.5 DSU memory map 159

 7

14.6 DSU registers 161
14.6.1 DSU control register 161
14.6.2 DSU break and signal-step register 162
14.6.3 DSU trap register 162
14.6.4 DSU trace buffer time tag counter register 163
14.6.5 DSU ASI diagnostic access register 163
14.6.6 AHB trace buffer control register 163
14.6.7 AHB trace buffer index register 164
14.6.8 AHB trace buffer breakpoint registers 164
14.6.9 Instruction trace control register 165

15.0 SERIAL DEBUG LINK 166
15.1 Overview 166
15.2 Operation 166

15.2.1 Transmission protocol 166
15.2.2 Baud rate generation 167

15.3 Registers 167

16.0 JTAG DEBUT LINK 169
16.1 Overview 169
16.2 Operation 169
16.3 Registers 170
16.4 Vendor and device identifiers 170

17.0 CLKGATE CLOCK GATING UNIT 171
17.1 Overview 171
17.2 Operation 171
17.3 Registers 172
17.4 Vendor and device identifiers 172

8

1.0 Introduction

1.1 Scope
This document describes the UT699 LEON 3FT microprocessor. The UT699 is a pipelined, monolithic, high-performance,
fault-tolerant SPARCTM V8 Processor. It has been designed for reliable operation in HiRel environments; the architecture
includes functionality to detect and correct (SEU) errors in all on-chip RAM memories.

The UT699 provides a 32-bit/33MHz PCI (Revision 2.1 compatible) master/target interface with DMA and host capabilities,
including a 16-bit user I/O interface for off-chip peripherals. An AMBA (Rev. 2.0) bus interface integrates the on-chip LEON
3FT core, SpaceWire, Ethernet, memory controller, PCI, CAN bus, and programmable interrupt peripherals.

The UT699 is SPARC V8 compliant. Therefore, industry standard compilers and kernels for the SPARC V8 can be used for
software development. A full software development suite, including a C/C++ cross-compiler system based on the Gnu C
Compiler (GCC) and the Newlib embedded C-library is available from Aeroflex Gaisler. The Bare C Compiler (BCC), based
upon GCC, includes a small run-time kernel with interrupt support and Pthreads library. The development suite runs on either
Windows or Linux operating systems. For multi-threaded applications, a SPARC compliant port of the eCos real-time kernel,
RTEMS 4.6.5 and VxWorks 6.x is supported.

The UT699 LEON 3FT microprocessor is based on IP cores from Aeroflex Gaisler AB’s GRLIB Intellectual Property (IP)
library and uses a plug-and-play configuration.

 9

1.2 Architecture
The UT699 consists of one LEON 3FT processor core, an 8/32-bit memory controller, a PCI controller, four SpaceWire
links, two CAN-2.0 interfaces, one UART, four timers, one interrupt controller, a 16-bit I/O port, a serial/JTAG debug link
and a 10/100 Ethernet MAC. The block diagram follows.

2x4K

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

Debug
Support Unit

AHB interface

LEON 3FT

Memory
Controller

AHB/APB
Bridge

I/O portUART

IEEE754
FPU

MUL/DIV

MMU

PCI
CAN-2.0

AHB Ctrl

Serial/JTAG
Debug Link

4x SpW
Bridge

Ethernet
MAC

D-cache
2x4K

I-cache

512 MB
PROM

512 MB
I/O

Up to 1GB
 SRAM

2x4K
D-cache

Up to 1GB
SDRAM

Figure 1. UT699 Functional Block Diagram

10

The design is based on the following IP cores from the GRLIB IP library:

Table 1. GRLIB IP cores used in the UT699

CORE FUNCTION VENDOR ID DEVICE ID

LEON 3FT SPARC V8 32-bit processor 0x01 0x053

DSU3 Debug support unit 0x01 0x004

IRQMP Interrupt controller 0x01 0x00D

APBCTRL AHB/APB bridge 0x01 0x006

FTMCTRL 8/32-bit memory controller with EDAC 0x01 0x054

AHBSTAT AHB failing address register 0x01 0x052

AHBUART Serial/AHB debug interface 0x01 0x007

AHBJTAG JTAG/AHB debug interface 0x01 0x01C

GRSPW SpaceWire link with DMA 0x01 0x01F

GRPCI 32-bit PCI bridge 0x01 0x014

PCIDMA DMA controller for PCI bridge 0x01 0x016

CANMC Dual CAN-2.0 interface 0x01 0x019

GRETH 10/100 Ethernet MAC 0x01 0x01D

APBUART 8-bit UART with FIFO 0x01 0x00C

GPTIMER Modular timer unit 0x01 0x011

GPIO General purpose I/O port 0x01 0x01A

CLKGATE Clock gating module 0x01 0x02C

 11

1.3 Memory map
The memory map of the internal AHB/APB buses can be seen below:

Table 2. Internal Memory Map

CORE ADDRESS RANGE BUS

FTMCTRL 0x00000000 - 0x1FFFFFFF : PROM area
0x20000000 - 0x3FFFFFFF : I/O area
0x40000000 - 0x7FFFFFFF : SRAM/SDRAM area

AHB

APBCTRL 0x80000000 - 0x80FFFFFF : APB bridge AHB

Reserved 0x81000000 - 0x8FFFFFFF : Unused AHB

DSU3 0x90000000 - 0x9FFFFFFF : Registers AHB

Reserved 0xA0000000 - 0xBFFFFFFF : Unused APB

PCI 0xC0000000 - 0xFFEFFFFF : PCI Bus
0xFFF00000 - 0xFFF1FFFF : PCI I/O space

AHB

CANOC1 0xFFF20000 - 0xFFF200FF : Registers AHB

CANOC2 0xFFF20100 - 0xFFF201FF : Registers AHB

Reserved 0xFFF20200 - 0xFFFFEFFF : Unused AHB

AHB plug-and-play 0xFFFFF000 - 0xFFFFFFFF : Plug-and-play configuration AHB

FTMCTRL 0x80000000 - 0x800000FF : Registers APB

APBUART1 0x80000100 - 0x800001FF : Registers APB

IRQMP 0x80000200 - 0x800002FF : Registers APB

GPTIMER 0x80000300 - 0x800003FF : Registers APB

PCI 0x80000400 - 0x800004FF : PCI DMA control registers APB

PCI DMA CTRL 0x80000500 - 0x800005FF : Registers APB

CLKGATE 0x80000600 - 0x800006FF : Registers APB

AHBUART 0x80000700 - 0x800007FF : Registers APB

PCIARB 0x80000800 - 0x800008FF : Registers APB

GPIO 0x80000900 - 0x800009AA : Registers APB

SPW1 0x80000A00 - 0x80000AFF : Registers APB

SPW2 0x80000B00 - 0x80000BFF : Registers APB

SPW3 0x80000C00 - 0x80000CFF : Registers APB

SPW4 0x80000D00 - 0x80000DFF : Registers APB

ETH 0x80000E00 - 0x80000EFF : Registers APB

AHBSTAT 0x80000F00 - 0x80000FFF : Registers APB

12

Access to addresses outside the ranges described above will return an AHB error response.

1.4 Interrupts
The following table indicates the interrupt assignment:

The interrupts are routed to the IRQMP interrupt controller and forwarded to the LEON 3FT processor.

Reserved 0x80000100 - 0x800FEFFF : Unused APB

APB plug-and-play 0x800FF000 - 0x800FFFFF : Plug-and-play configuration APB

Reserved 0x80100000 - 0xFFFFFFFF : Unused APB

Table 3. Interrupt Assignment

CORE INTERRUPT
FUNCTION

AHBSTAT 1 AHB bus error

APBUART 2 UART RX/RX interrupt

PCI 3 PCI DMA interrupt

CAN1 4 CAN1

CAN2 5 CAN2

GPTIMER 6, 7, 8, 9 Timer underflow interrupts

SPW1 10 SpaceWire1 RX/TX data interrupt

SPW2 11 SpaceWire2 RX/TX data interrupt

SPW3 12 SpaceWire3 RX/TX data interrupt

SPW4 13 SpaceWire4 RX/TX data interrupt

ETH 14 Ethernet RX/TX interrupt

GPIO 1 - 15 External I/O interrupt

Table 2. Internal Memory Map

CORE ADDRESS RANGE BUS

 13

1.5 Signals
The device has the following external signals. The reset value for any signal is undefined if not otherwise indicated.

Table 4. Signals

PIN NAME FUNCTION RESET
VALUE DESCRIPTION

CLK I -- Main system clock

RESET IS -- System reset

ERROR1 OD -- Processor error mode indicator. This is an active low
output.

WDOG1 OD -- Watchdog indicator. This is an active low output.

ADDR[27:0] O Address bus

DATA[31:0] I/O HIGH-Z Data bus

CB[7:0] I/O HIGH-Z EDAC checkbits

WRITEN O 1 Write strobe for PROM and I/O

OEN O 1 Output enable for PROM and I/O

IOS O 1 I/O area chip select

ROMS[2:0] O 1 PROM chip select

RWEN[3:0] O 1 SRAM write enable strobe

RAMOEN[4:0] O 1 SRAM output enable

RAMS[4:0] O 1 SRAM chip select

READ O 1 SRAM, PROM, and I/O read indicator

BEXC I -- Bus exception

BRDY I -- Bus ready

SDCLK O 1 SDRAM clock

SDRAS O 1 SDRAM row address strobe

SDCAS O 1 SDRAM column address strobe

SDWEN O 1 SDRAM write enable

SDCS[1:0] O 1 SDRAM chip select

SDDQM[3:0] O SDRAM data mask

CAN_RXD[1:0] I -- CAN receive data

CAN_TXD[1:0] O CAN transmit data

DSUACT O DSU mode indicator

DSUBRE I -- DSU break

DSUEN I -- DSU enable

DSURX I -- DSU UART receive data

DSUTX O DSU UART transmit data

TRST I -- JTAG reset

TMS I -- JTAG test mode select

TCK I -- JTAG clock

TDI I -- JTAG test data input

TDO O JTAG test data output

EMDC O Ethernet media interface clock

ERX_CLK I -- Ethernet RX clock

EMDIO I/O Ethernet media interface data

ERX_COL I -- Ethernet collision error

ERX_CRS I -- Ethernet carrier sense detect

ERX_DV I -- Ethernet receiver data valid

ERX_ER I -- Ethernet reception error

ERXD[3:0] I -- Ethernet receive data

ETXD[3:0] O Ethernet transmit data

ETX_CLK I -- Ethernet TX clock

ETX_EN O Ethernet transmit enable

ETX_ER O Ethernet transmit error

ETXD[3:1] O Ethernet transmit data

ETX_CLK I -- Ethernet TX clock

ETX_EN O Ethernet transmit enable

ETX_ER O Ethernet transmit error

GPIO[15:0] I/O Bit 0 of general purpose I/O

SPW_CLK I -- SpaceWire clock

SPW_RXS[3:0] I -- SpaceWire receive strobe

SPW_RXD[3:0] I -- SpaceWire receive data

Table 4. Signals

PIN NAME FUNCTION RESET
VALUE DESCRIPTION

14

 15

Notes:
1. The pin must be tied to VDD through a pull-up resistor as specified in the PCI Local Bus Specification Revision 2.1, Section 4.3.3.

SPW_TXS[3:0] O SpaceWire transmit strobe

SPW_TXD[3:0] O SpaceWire transmit data

SPW_RXD[3:0] I -- SpaceWire receive data

RXD I -- UART receive data

TXD O UART transmit data

PCI_AD[31:0] PCI-I/O Bit 0 of PCI address and data bus

PCI_RST PCI-I -- PCI reset input

PCI_CLK PCI-I -- PCI clock input

PCI_CBE[3:0] PCI-I/O PCI bus command and byte enable

PCI_PAR PCI-I/O PCI parity checkbit

PCI_FRAME1 PCI-3 HIGH-Z PCI cycle frame indicator

PCI_IRDY1 PCI-3 HIGH-Z PCI initiator ready indicator

PCI_TDRY1 PCI-3 HIGH-Z PCI target ready indicator

PCI_STOP1 PCI-3 HIGH-Z PCI target stop request

PCI_DEVSEL1 PCI-3 HIGH-Z PCI device select

PCI_PERR1 PCI-3 HIGH-Z PCI parity error indicator

PCI_IDSEL PCI-I -- PCI initializer device select

PCI_GNT PCI-O PCI request to arbiter in point to point configuration

PCI_HOST PCI-I -- PCI bus access indicator in point to point configura-
tion

PCI_REQ PCI-I -- PCI host enable input

PCI_ARB_REQ[7:0] PCI-I -- PCI arbiter bus request

PCI_ARB_GNT[7:0] PCI-O PCI arbiter bus grant

Table 4. Signals

PIN NAME FUNCTION RESET
VALUE DESCRIPTION

16

1.6 Clocking
1.6.1 Clock Inputs
The following table shows the clock inputs in UT699.

1.6.2 Clock Gating
To save power, the AHB clock can be internally disabled from unused functional blocks. This is done through software by
setting the appropriate bits in the clock gating unit. See Section 2.1.7 for more details.

1.7 Reset operation
When RESET is asserted, the following signals are asynchronously driven to their inactive states: ROMS, RAMS, IOS,
OEN RAMOEN. In addition, DATA [31:0] and CB [7:0] are driven to a high-z state.

When the PCI reset input (PCI_RST) is asserted, all PCI trim-state signals are asynchronously driven to their high-z state as
required by the PCI specification.

Table 5. Clock Inputs

SIGNAL DESCRIPTION

CLK Main system clock. The processor and AHB bus is clocked directly by CLK

PCI_CLK PCI clock. Drives the PCI clock domain in the PCI interface.

SPC_CLK SpaceWire transmit clock. Drives the transmitter clock domain in all four
SpaceWire links.

ETX_CLK Ethernet transmitter clock. 2.5 or 25 MHz generated by external PHY.

ERX_CLK Ethernet receiver clock. 2.5 or 25 MHz generated by external PHY.

 17

2.0 LEON 3FT SPARC V8 32-bit Microprocessor

2.1 Overview
The LEON 3FT is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is designed for embed-
ded applications, combining high performance with low complexity and low power consumption. The processor core has
been hardened against SEU errors in on-chip memory by using fault-tolerance techniques.

The LEON 3FT has the following main features: 7-stage pipeline with Harvard architecture, separate instruction and data
caches, hardware multiplier and divider, on-chip debug support and a floating point unit.

A block diagram of the LEON 3FT core follows:

2.1.1 Integer unit
The LEON 3FT integer unit implements the full SPARC V8 standard, including hardware multiply and divide instructions.
The integer unit has eight register windows with a total of 136 32-bit r registers. These registers conform to the SPARC
model for the general purpose operand registers accessible through instructions, and are implemented with RAM blocks.
The instruction pipeline uses a Harvard architecture consisting of seven stages with a separate instruction and data cache
interface.

2.1.2 Cache sub-system
The processor is configured with 8kB instruction and 8kB data caches, both configured as two-way set-associative with 4kB
per way and 32 bytes per line for instruction cache and 16 bytes per line for data cache. Sub-blocking is implemented with
one valid bit per 32-bit word. The instruction cache uses streaming during line-refill to minimize refill latency. The data
cache uses write-through policy and implements a double-word write buffer.

2.1.3 Floating-point unit
The LEON 3FT processor is configured with the GRFPU floating-point unit (FPU). The FPU executes in parallel with the
integer unit, and does not block the processor operation unless a data or resource dependency exists.

Integer Pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Multiplier

Divider

FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Figure 2. LEON 3FT Microprocessor Core Block Diagram

18

2.1.4 On-chip debug support
The LEON 3FT pipeline includes functionality to allow non-intrusive debugging on target hardware. Full access to all pro-
cessor registers and cache memory is provided through the debug support unit (DSU). To aid software debugging, two hard-
ware watchpoint registers are implemented. Each register can cause a breakpoint trap on an arbitrary instruction or data
address range. When the DSU is enabled, the watchpoints can be used to enter debug mode. The DSU also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer monitors and stores exe-
cuted instructions which can later be read out over the debug interface.

2.1.5 Interrupts
LEON 3FT supports the SPARC V8 trap model with a total of 15 asynchronous interrupts. The interrupt interface provides
functionality to both generate and acknowledge interrupts.

2.1.6 AMBA interface
The cache system implements an AMBA AHB master to load and store data to/from the caches. The interface is compliant
with the AMBA-2.0 standard. During line refill, incremental bursts are generated to optimize the data transfer.

2.1.7 Power-down mode
The LEON 3FT processor core implements a power-down mode, which halts the pipeline and caches until the next interrupt.
This is an efficient way to minimize power-consumption when the application is idle.

2.2 LEON 3FT integer unit

2.2.1 Overview
The LEON 3FT integer unit implements the integer part of the SPARC V8 instruction set. The implementation is focused on
high performance and low complexity. The LEON 3FT integer unit has the following main features:

• 7-stage instruction pipeline
• Separate instruction and data cache interface
• Eight register windows to access the 136 r registers
• Hardware multiplier with 5 clocks latency
• Radix-2 divider (non-restoring)
• Single-vector trapping for reduced code size

 19

Figure 3 shows a block diagram of the integer unit.

Figure 3. LEON 3FT Integer Unit Datapath Diagram

alu/shift mul/div
y

register file

D-cache
address/dataout
datain

32
32

operand2rs1

imm

Ywres

result m_y

Decode

Execute

Memory

Write back

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm

20

2.2.2 Instruction pipeline
The LEON 3FT integer unit uses a single instruction issue pipeline with seven stages:

1. FE (Instruction Fetch): If the instruction cache is enabled and a cache hit occurs, the instruction is fetched from
the instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction is valid at the
end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL or branch target address is generated.

3. RA (Register Access): Operands are read from the register file or from internal data bypasses.

4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g. LD/ST) and JMPL/
RETT instructions, the address is generated.

5. ME (Memory): Data cache is accessed. If a data cache miss occurs, data is accessed from system memory and
the cache is updated. Store data read out in the execution stage is written to the data cache at this time.

6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appropriate.

7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the register file.

Table 6 lists the cycles per instruction (assuming cache hit, and no integer condition codes or load interlock exist):

2.2.3 SPARC implementor’s ID
Aeroflex Gaisler is assigned number 15 (0x0F) as SPARC implementor’s identification. This value is hard-coded into bits
31:28 in the processor state register (PSR:impl). The version number for LEON 3FT is 3, which is hard-coded in to bits
27:24 of the PSR (PSR:ver).

2.2.4 Divide instructions
Full support for SPARC V8 divide instructions is provided via instruction SDIV, UDIV, SDIVCC and UDIVCC. The divide
instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow detection is performed as
defined in the SPARC V8 standard.

Table 6. Instruction Timing

INSTRUCTION CYCLES

JMPL, RETT 3

Double load 2

Single store 2

Double store 3

SMUL/UMUL 5

SDIV/UDIV 35

Taken Trap 5

Atomic load/store 3

All other instructions 1

 21

2.2.5 Multiply instructions
The LEON 3FT processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC and SMULCC.
These instructions perform 32x32-bit integer multiplication producing a 64-bit result. SMUL and SMULCC perform signed
multiplication while UMUL and UMULCC perform unsigned multiplication. UMULCC and SMULCC also set the condi-
tion codes of the PSR to reflect the result of the operation. The multiply instructions are performed using a 16x16 signed
hardware multiplier, which is iterated four times. To improve timing, the 16x16 multiplier is implemented a with a pipeline
register stage.

2.2.6 Hardware breakpoints
The integer unit is configured with two hardware breakpoints. Each breakpoint consists of a pair of application-specific reg-
isters (%asr24/25 and %asr26/27); one with the break address and one with a mask.

WPR1, WPR2 %asr24, %asr26

WPMR1, WPMR2 %asr25,
%asr27

Any binary aligned address range can be watched. The range is defined by the WADDR field and masked by the WMASK
field (WMASK[n] = 1 enables comparison). On a breakpoint hit, trap 0x0B is generated. By setting the IF, DL and DS bits,
a hit can be generated on instruction fetch, data load or data store. Clearing these three bits will effectively disable the break-
point function.

31 2 1 0
 WADDR[31:2] IF

31 2 0
 WADDR[31:2] DL DS

Table 7. Watchpoint Address Register

BIT NUMBER(S) BIT NAME RESET
STATE

DESCRIPTION

31-2 WADDR[31:2] Watch Address
Defines the range of watch addresses used to gen-
erate a breakpoint.

1 Reserved

0 IF Instruction Fetch Break Enable
0: Break on instruction fetch disabled.
1: Break on instruction fetch enabled.

Figure 4. Watchpoint Registers

22

2.2.7 Instruction trace buffer
The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace buffer operation is controlled
through the debug support interface and does not affect processor operation. The size of the trace buffer is 256 lines deep and 128
bits wide. The buffer stores the following information:

• Instruction address and opcode
• Instruction result
• Load/store data and address
• Trap information
• 30-bit time tag

The operation and control of the trace buffer is further described in Chapter 14.0, Hardware Debug Support.

2.2.8 Processor configuration register
The application specific register 17 (%asr17) provides information on how various configuration options were set during synthe-
sis. This can be used to enhance the performance of software, or to support enumeration in multi-processor systems. The register
can be accessed through the RDASR instruction and has the following layout:

Table 8. Watchpoint Mask Registers

BIT NUMBER(S) BIT NAME RESET
STATE

DESCRIPTION

31-2 WMASK[31:2] Watch Mask
These bits mask or unmask the corresponding bits
in the WADDR.
0: Address bit not used by the WADDR.
1: Address bit used by the WADDR.

1 DL Data Load Break Enable
0: Break on data load disabled
1: Break on data load

0 DS Data Store Break Enable
0: Break on data store disabled
1: Break on data store

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-28 PI 0 Processor Index
In multi-processor systems, each LEON 3FT core gets a unique
index to support enumeration. Read=0; Write=don’t care.

27-24 RFT 0000 Register File RAM Timing Adjust
Read=0000b; Must write 0000b.

23-15 Reserved

PCR %asr17

31 28 27 24 14 13 12 11 10 9 8 7 5 4 0
PI RFT RESERVED DW SV LD FPU M V8 NWP NWIN

Figure 5. LEON 3FT Configuration Register

 23

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

14 DW 0 Disable Write Error Trap
0: Write error trap (tt=0x2b) ignored.
1: Write error trap (tt=0x2b) allowed.

13 SV 0 Single-Vector Trapping Enable
0: Single-vector trapping disabled.
1: Single-vector trapping enabled.

12 LD 0 Load Delay
0: One-cycle load delay is used.
1: Two-cycle load delay is used.
Read=0; Write=don’t care.

11-10 FPU 01 Floating Point Implementation
00: No FPU
01: GRFPU
10: Meiko FPU
11: GRFPU-Lite
Read=01; Write=don’t care.

9 M 0 MAC Implementation
0: Optional multiply-accumulate (MAC) instruction not available.
1: Optional multiply-accumulate (MAC) instruction is available.
Read=0; Write=don’t care.

8 V8 1 Multiply and Divide Implementation
0: SPARC V8 multiply and divide instructions not available.
1: SPARC V8 multiply and divide instructions are available.
Read=1; Write=don’t care.

7-5 NWP 010 Watchpoint Implementation
Number of implemented watchpoints.
Read=010b; Write=don’t care.

4-0 NWIN 00111 Register Window Implementation
Number of implemented registers windows corresponds to
NWIN+1.
Read=00111b; Write=don’t care.

24

2.2.9 Exceptions
LEON 3FT adheres to the general SPARC trap model. The table below shows the implemented traps and their individual
priority.

Table 9. Trap Allocation and Priority

TRAP TT PRI DESCRIPTION

reset 0x00 1 Power-on reset

write error 0x2B 2 Write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 Uncorrectable register file SEU error

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

interrupt_level_14 0x1E 18 Asynchronous interrupt 14 / ETH

interrupt_level_13 0x1D 19 Asynchronous interrupt 13 / SPW4

interrupt_level_12 0x1C 20 Asynchronous interrupt 12 / SPW3

interrupt_level_11 0x1B 21 Asynchronous interrupt 11 / SPW2

interrupt_level_10 0x1A 22 Asynchronous interrupt 10 / SPW1

interrupt_level_9 0x19 23 Asynchronous interrupt 9 / GPTIMER

interrupt_level_8 0x18 24 Asynchronous interrupt 8 / GPTIMER

interrupt_level_7 0x17 25 Asynchronous interrupt 7 / GPTIMER

interrupt_level_6 0x16 26 Asynchronous interrupt 6 / GPTIMER

 25

2.2.10 Single vector trapping (SVT)
Single-vector trapping (SVT) is a SPARC V8 option to reduce code size for embedded applications. When enabled, any
taken trap always jumps to the reset trap handler whose address is defined by TBR.tba, or TBR[31:19], with the lower 12
bits don’t care. The trap type will be indicated in TBR.tt, or TBR[11:4], and must be decoded by the shared trap handler.
SVT is enabled by setting bit 13 in the PCR (%asr17).

2.2.11 Address space identifiers (ASI)
In addition to the address, the SPARC processor also generates an 8-bit address space identifier (ASI) providing up to 256
separate, 32-bit address spaces. During normal operation, the LEON 3FT processor accesses instructions and data using ASI
0x08 - 0x0B as defined in the SPARC standard. Using the LDA/STA instructions, alternative address spaces can be
accessed. The table shows the ASI usage for LEON 3FT.

2.2.12 Power-down
The processor can be configured to include a power-down feature to minimize power consumption during idle periods. The
power-down mode is entered by performing a WRASR instruction to %asr19:

wr %g0, %asr19 // write 0x0 to %asr19

TRAP TT PRI DESCRIPTION

interrupt_level_5 0x15 27 Asynchronous interrupt 5 / CAN2

interrupt_level_4 0x14 28 Asynchronous interrupt 4 / CAN1

interrupt_level_3 0x13 29 Asynchronous interrupt 3 / PCI

interrupt_level_2 0x12 30 Asynchronous interrupt 2 / APBUART

interrupt_level_1 0x11 31 Asynchronous interrupt 1 / AHBSTAT

Table 10. ASI Usage

ASI USAGE

0x01 Forced cache miss

0x02 System (cache control) registers

0x08 User instruction

0x09 Supervisor instruction

0x0A User data

0x0B Supervisor data

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush entire instruction cache

0x11 Flush entire data cache

Table 9. Trap Allocation and Priority

26

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor pipeline and caches are
then static, reducing power consumption from dynamic switching.

2.2.13 Processor reset operation
The processor is reset by asserting the RESET input for at least four clock cycles. The following table indicates the reset values
of the registers that are affected by the reset. All other registers either maintain their value or are undefined.

Code execution starts at address 0 following a reset.

2.2.14 Integer unit SEU protection
SEU protection for the integer unit register file (RF) is implemented with seven BCH check bits. The protection logic can correct
up to 1 error per 32-bit word in the register file and detect two errors. The correction is done transparently to the software and
does not affect the instruction timing. If a detected SEU error cannot be corrected, trap 0x20 is generated.

ASR register 16 (%asr16) is used to control the IU register file SEU protection. It is possible to disable the SEU protection by
setting the IDI bit and to inject errors using the TE bits. Corrected errors in the register file are counted and available in ICNT
fields. The counter saturates at its maximum value (7) and should be reset by software after read-out.

Table 11. Processor Reset Values

REGISTER RESET VALUE

PC (Program Counter) 0x00000000

nPC (Next Program Counter) 0x00000004

PSR (Processor Status Register) ET=0, S=1

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-17 Reserved

16-14 IUFT 010 Integer Unit Fault-Tolerant Identification
Read=010b; Write=don’t care.

13-11 ICNT Integer Unit Register File Error Counter
Number of detected parity errors in the IU register file.
000: 0 errors
001: 1 error
010: 2 errors
...
111: 7 errors

10-3 TB[7:0] Register File Test Bits
In test mode, these bits are XORed with correct parity bits and then
written back to the register file.

RPCR %asr16

31 16 14 13 11 10 3 2 1 0
RESERVED IUFT ICNT TB[7:0] DP TE RP

Figure 6. Register Protection Control Register

 27

2.2.15 Data scrubbing
When a data word in the register file is corrected, the corrected value is used during the execution of the current instruction,
but not automatically written back to the register file. There is generally no need to perform data scrubbing (read-write oper-
ation) on the IU register file. During normal operation, the active part of the IU register files will be flushed to memory on
each task switch. This causes all saved registers to be checked and corrected if necessary. Since most real-time operating
systems perform several task switches per second, the data in the register file will be frequently refreshed.

2.3 Floating-point unit
The SPARC V8 architecture defines two optional co-processors: one floating-point unit (FPU) and one user-defined co-pro-
cessor. The UT699 is configured to use the GRFPU from Aeroflex Gaisler.

The high-performance GRFPU operates on single- and double-precision operands, and implements all SPARC V8 FPU
instructions. The FPU is interfaced to the LEON 3FT pipeline using a LEON3-specific FPU controller (GRFPC) that allows
FPU instructions to be executed simultaneously with integer instructions. Only in case of a data or resource dependency is
the integer pipline held. The GRFPU is fully pipelined and allows the start of one instruction each clock cycle, with the
exception of FDIV and FSQRT, which can only be executed one at a time. The FDIV and FSQRT instructions are, however,
executed in a separate divide unit and do not block the FPU from performing all other operations in parallel.

All instructions except FDIV and FSQRT have a latency of four clock cycles at instruction level. The table below shows the
GRFPU instruction timing when used together with GRFPC:

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

2 DP Diagnostic Parity RAM Select
Selects to insert errors in the main or redundant register file memory.
See the table below for a description of operation.

1 TE Integer Unit Register File Test Enable
Disables or enables register file test mode.
See the table below for a description of operation.

0 RP Integer Unit Register File Protection Disable
0: Enable IU RF parity protection.
1: Disable IU RF parity protection.

Table 12. GRFPU Worst-Case Instruction Timing with GRFPC

INSTRUCTION THROUGHPUT LATENCY

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD,
FSMULD, FITOS, FITOD, FSTOI, FDTOI, FSTOD, FDTOS,

FCMPS, FCMPD, FCMPES. FCMPED

1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25

28

The GRFPC controller implements the SPARC deferred trap model and the FPU traq queue (FQ) can contain up to seven
queued instructions when an FPU exception is taken. The register file for the FPU consists of thirty-two, 32-bit registers. In
the UT699, the register file has been implemented with SEU-hardened flip-flops and does not need SEU error-detection or
correction.

2.4 Cache sub-system
2.4.1 Overview
The LEON 3FT processor implements a Harvard architecture with separate internal instruction and data buses connected to
two independent cache controllers. The instruction and data cache controllers can be separately configured via the configu-
ration registers. The cache configuration is a two-way set associative with a set size of 4kB per way divided into cache lines
with 16 bytes per line for data cache and 32 bytes per line for instruction cache. Both data and instruction caches use a least-
recently used (LRU) replacement policy.

Cachability for both caches is controlled through the AHB plug-and-play address information. The memory mapping for
each AHB slave indicates whether the area is cachable, and this information is used to statically determine which access will
be treated as cachable. This approach means that the cachability mapping is always coherent with the current AHB configu-
ration.

The detailed operation of the instruction and data caches is described in the following sections.

2.4.2 Instruction cache
The instruction cache is implemented as a 2-way set-associative cache with LRU replacement. Each way is 4kB large and
divided into cache lines of 32 bytes. Each line has a cache tag associated with it, consisting of a tag field and valid bit for
each 4-byte sub-block. On an instruction cache miss to a cachable location, the instruction is fetched and the corresponding
tag and data line are updated.

If instruction burst fetch is enabled in the cache control register (CCR), the cache line is filled from main memory starting at
the missed address and until the end of the line. At the same time, the instructions are forwarded to the IU. If the IU cannot
accept the streamed instructions due to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is
completed. If the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) during the line fill, the line
fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction streaming is enabled even when the
cache is disabled. In this case, the fetched instructions are only forwarded to the IU and the cache is not updated. During
cache line refill, incremental bursts are generated on the AHB bus.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in the cache tag will not be
set. If the IU later fetches an instruction from the failed address, a cache miss will occur, triggering a new access to the failed
address. If the error remains, an instruction access error trap (tt=0x01) will be generated.

2.4.3 Data cache
The data cache is configured identical to the instruction cache with two ways of 4kB, 16 bytes/line and LRU replacement.
On a data cache read-miss to a cachable location, 4 bytes of data are loaded into the cache from main memory. The write
policy for stores is write-through with no-allocate on a write miss. If a memory access error occurs during a data load, the
corresponding valid bit in the cache tag will not be set and a data access error trap (tt=0x09) will be generated.

2.4.4 Write buffer
The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is sent to the destination
device. For half-word or byte stores, the stored data is replicated into proper byte alignment for writing to a word-addressed
device before being loaded into one of the WRB registers. The WRB is emptied prior to a load-miss cache-fill sequence to
avoid any stale data from being written into the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an exception to the store instruc-
tion. Depending on memory and cache activity, the write cycle may not occur until several clock cycles after the store
instruction has completed. If a write error occurs, the currently executing instruction will take trap 0x2B.

 29

Note: The 0x2B trap handler should flush the data cache, since a write hit would update the cache while the memory would
keep the old value due the write error.

2.4.5 Instruction and data cache tags
The instruction and data cache tags and shown in the following figures:

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-12 ITAG Instruction Cache Address Tag
Contains the tag address of the cache line.

11-8 Reserved Read=0000b; Write=don’t care.

7-0 IVAL Instruction Tag Valid
When set, the corresponding sub-block of the cache line contains
valid data. These bits are set when a sub-block is filled due to a
cache miss; a cache fill which results in a memory error will leave
the valid bit unset. A FLUSH instruction will clear all valid bits.
IVAL[0]: corresponds to address 0 in the I-cache line
IVAL[1]: corresponds to address 1 in the I-cache line
IVAL[4]: corresponds to address 2 in the I-cache line
IVAL[3]: corresponds to address 3 in the I-cache line
IVAL[4]: corresponds to address 4 in the I-cache line
IVAL[5]: corresponds to address 5 in the I-cache line
IVAL[6]: corresponds to address 6 in the I-cache line
IVAL[7]: corresponds to address 7 in the I-cache line

31 12 11 8 7 0
ITAG 0000 IVAL

Figure 7. Instruction Cache Tag Layout for 4kB per Way with 32 Bytes/Line

30

2.4.6 Cache flushing
Both instruction and data caches are flushed by executing the FLUSH instruction. The entire instruction cache is also
flushed by setting the FI bit in the cache control register (CCR) or by writing to any location with ASI=0x10. The entire data
cache is also flushed by setting the FD bit in the CCR or by writing to any location with ASI=0x11. Cache flushing takes one
cycle per cache line, during which, the IU will not be halted and the caches are disabled. When the flush operation is com-
pleted, the cache resumes the state (disabled, enabled or frozen) indicated in the cache control register. Diagnostic access to
the cache is not possible during a FLUSH operation and will cause a data exception (tt=0x09) if attempted.

2.4.7 Diagnostic cache access
Tags and data in the instruction and data cache can be accessed through ASI address space 0x0C, 0x0D, 0x0E and 0x0F by
executing LDA and STA instructions. The ITAG and DTAG fields of the cache tag define the upper 20 bits of the address,
while the twelve (12) least significant bits of the address correspond to the index of the cache set.

2.4.7.1 Diagnostic reads of instruction and data cache
Cache tags are read by executing an LDA instruction with ASI=0x0C for instruction cache tags and ASI=0x0E for data
cache tags. A cache line and set are indexed by the address bits making up the cache offset and the least significant bits of
the address bits making up the address tag. Similarly, the data sub-blocks may be read by executing an LDA instruction with
ASI=0x0D for instruction cache data and ASI=0x0F for data cache data. The sub-block to be read in the indexed cache line
and set is selected 64, the regaddr field of the LDA or STA instruction.

2.4.7.2 Diagnostic writes to instruction and data cache
Cache tags can be directly written to by executing a STA instruction with ASI=0xC for the instruction cache tags and
ASI=0x0E for the data cache tags. The cache line and set are indexed by the address bits making up the cache offset and the
least significant bits of the address bits making up the address tag. D[31:10] is written into the ATAG filed and the valid bits
are written with D[7:0] of the write data for instruction cache and D[3:0] for data cache. Bit D[9] is written into the LRR bit
(disabled) and D[8] is written into the lock bit (disabled). The data sub-blocks can be directly written by executing a STA
instruction with ASI=0xD for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in
the indexed cache line and set is selected by A[4:2].

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-12 DTAG Data Cache Address Tag
Contains the tag address of the cache line.

11-4 Reserved Read=00000000b; Write=don’t care.

3-0 DVAL Data Tag Valid
When set, the corresponding sub-block of the cache line contains
valid data. These bits are set when a sub-block is filled due to a
cache miss; a cache fill which results in a memory error will leave
the valid bit unset. A FLUSH instruction will clear all valid bits.
DVAL[0]: corresponds to address 0 in the D-cache line
DVAL[1]: corresponds to address 1 in the D-cache line
DVAL[4]: corresponds to address 2 in the D-cache line
DVAL[3]: corresponds to address 3 in the D-cache line

31 12 11 4 3 0
ATAG 00000000 DVAL

Figure 8. Instruction and Data Cache Tag Layout for 4 Kbyte Way with 32 Bytes / Line

 31

2.4.8 Cache control register
The operation of the instruction and data caches is controlled through a common Cache Control Register (CCR) as shown in
Figure 9. Each cache can operate in one of three modes: disabled, enabled or frozen, as determined by the DCS or ICS fields. If
disabled, no cache operation is performed and load and store requests are passed directly to the memory controller. If enabled,
the cache operates as described above. In the frozen state, the cache is accessed and kept synchronized to the main memory as
if it were enabled, but no new lines are allocated on read misses.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-29 Reserved

28 PS Parity Select
0: Diagnostic read will return tag or data word.
1: Diagnostic read will return the check bits in the bits 3:0.

27-24 TB Test Bits
0: No effect.
1: Check bits will be XORed with test bits TB during diagnostic.
write.

23 Reserved Must write 0.

22 FD Flush Data Cache
0: No effect.
1: Flush the data cache.
Read=0.

21 FI Flush Instruction Cache
0: No effect.
1: Flush the instruction cache.
Read=0.

20-19 FT Fault Tolerant Mode
00: No fault-tolerance
01: 4-bit parity checking
10: Unused
11: Unused

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

18-17 Reserved

16 IB Instruction Burst Fetch
0: Disable burst fill during instruction fetch.
1: Enable burst fill during instruction fetch.

 ASI 0x02
CCR OFFSET 0x00

31 29 28 27 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES PS TB -- FD FI FT RES IB IP DP ITE IDE DTE DDE DF IF DCS ICS

Figure 9. Cache Control Register

32

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is taken. This can be bene-
ficial in a real-time system to allow a more accurate calculation of worst-case execution time for a code segment. The execu-
tion of the interrupt handler will not evict any cache lines. When control is returned to the interrupted task, the cache state is
identical to what it was before the interrupt. If a cache has been frozen by an interrupt, it can only be re-enabled by setting
the DCS or ICS fields to the enabled state. This is typically done at the end of the interrupt handler before control is returned
to the interrupted task.

15 IP Instruction Cache Flush Pending
0: Instruction cache flush operation not in progress.
1: Instruction cache flush operation is in progress.

14 DP Data Cache Flush Pending
0: Data cache flush operation is not in progress.
1: Data cache flush operation is in progress.

13-12 ITE Instruction Cache Tag Errors
Number of detected parity errors in the instruction tag cache.

11-10 IDE Instruction Cache Data Errors
Number of parity errors in the instruction data cache.

9-8 DTE Data Cache Tag Errors
Number of detected parity errors in the data tag cache.

7-6 DDE Data Cache Data Errors
Number of detected parity errors in the data cache.

5 DF Data Cache Freeze on Interrupt
Data cache response to asynchronous interrupt:
0: Normal operation.
1: Data cache automatically frozen.

4 IF Instruction Cache Freeze on Interrupt
Instruction cache response to asynchronous interrupt:
0: Normal operation.
1: Instruction cache automatically frozen.

3-2 DCS Data Cache State
Indicates the current data cache state:
x0: Disabled
01: Frozen
11: Enabled
x=don’t care.

1-0 ICS Instruction Cache State
Indicates the current instruction cache state:
x0: Disabled
01: Frozen
11: Enabled
x=don’t care.

 33

2.4.9 Error protection
Each word in the cache tag or cache data is protected by four parity bits. An error during a cache access causes a cache line flush
and a re-execution of the failing instruction. This ensures the complete cache line (tags and data) is refilled from external mem-
ory. For every detected error, the corresponding counter in the cache control register is incremented. The counters saturate at
their maximum value of three and should be reset by software after reading the fields. The cache memory check bits can be
diagnostically read by setting the PS bit in the cache control register and then performing a normal tag or data diagnostic read.

2.4.10 Cache configuration registers
The configuration of the two caches is defined in two registers: the instruction and data configuration registers. These registers
are read-only and indicate the size and configuration of the caches.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 REPL 0 Cache Locking
0: Cache locking is not implemented.
Read=0; Write=don’t care.

30 Reserved

29-28 CP 01 Cache Replacement Policy
01: Least recently used (LRU).
Read=01; Write=don’t care.

27 SN 0 Cache Snooping
0: No snooping.
Read=0; Write=don’t care.

26-24 WAYS 001 Cache Associativity
001: Two-way associative.
Read=001b; Write=don’t care.

23-20 WSIZE 0010 Set Size
Indicates the size in kB of each cache way. Size = 2WSIZE

Read=0010b; Write=don’t care.

19 LR 0 Local Ram Present
Read=0; Write=don’t care.

18-16 LSIZE 011 (I)
010 (D)

Line Size
Indicated the size (words) of each cache line. Line size = 2LSZ

Read=011b for I-cache and 010b for D-cache; Write=don’t care.

15-12 LRSZ 0 Local Ram Size
Read=0; Write=don’t care.

 ASI 0x02
 ICCR, DCCR Offset 0x08, x0x0C

31 30 29 28 27 26 25 24 23 20 19 18 16 15 12 11 4 3 0
CL REPL SN WAYS WSIZE LR LSIZE LRSIZE LRSTART M RES

Figure 10. Cache Configuration Registers

34

All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 0x02.
The table below shows the register addresses.

The following assembly instruction shows how to read any of the cache system registers.

lda %g1, [rr] 2 // load register%g1 with the contents of the
// corresponding cache register

where rr is 0x00, 0x08, or 0x0C. Following this instruction, the contents of the cache register whose address is rr will be
loaded into global register %g1.

2.4.11 Software consideration
After reset, the caches are disabled and the value of cache control register (CCR) is 0. Before the caches may be enabled, a
flush operation must be performed to initialized (clear) the tags and valid bits. A suitable assembly sequence could be:

flush
set 0x81000F, %g1 // load global register %g1 with 0x0081000F
sta %g1, [%g0] 2 // store the contents of %g1 to the CCR

2.5 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can optionally be configured. For
details on operation, see the SPARC V8 manual.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

11-4 LRSA 0 Local Ram Start Address
Read=0; Write=don’t care.

3 MMU 1 MMU Present
0: MMU not present.
1: MMU present.
Read=1; Write=don’t care.

2-0 Reserved

Table 13. ASI 0x02 (System Registers) Address Map

REGISTER ADDRESS

Cache control register 0x00

Instruction cache configuration register 0x08

Data cache configuration register 0x0C

 35

2.5.1 MMU ASI usage
When the MMU is used, the following ASI mappings are added.

2.5.2 Cache operation
When the MMU is disabled, the caches operate normally with physical address mapping. When the MMU is enabled, the
cache tags contain the virtual address and include an 8-bit context field. Because the cache is virtually tagged, no extra clock
cycles are needed in the case of a cache load hit. In the case of a cache miss or store hit (write-through cache) at least 2 extra
clock cycles are used if there is a translation look-aside buffer (TLB) hit. If there is a TLB miss, the page table must be tra-
versed, resulting in up to four AMBA read accesses and one possible write-back operation.

2.5.3 MMU registers
The following MMU registers are implemented:

The definition of the registers can be found in the SPARC V8 manual.

2.5.4 Translation Look-Aside Buffer (TLB)
The MMU is configured to use a separate TLB for instructions and data. The number of entries are eight for instructions and
eight for data. The organization of the TLB and number of entries is not visible to the software and does not require any
modification to the operating system.

2.6 RAM usage
2.6.1 Integer unit register file
The integer unit register file has one write port and two read ports, all 39 bits wide. The data is organized as 32-data bits + 7
BCH checksum bits. The register file is implemented with two sets of three RAM blocks. Each set is implementing with
256x48 2-port RAM by concatenating three 256x16 2-port RAM blocks. The 32-bit data is stored in bits [31:0] while the
parity bits are stored in [38:32]. Bits [47:39] are unused and tied to ground. The BCH bits are generated as follows:

Table 14. MMU ASI Usage

ASI USAGE

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

Table 15. MMU Registers (ASI = 0x19)

ADDRESS REGISTER

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

36

P0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
P1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
P2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
P3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
P4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
P5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
P6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

To form a 3-port register file, the two sets share their write ports for the same write address while the read ports have indi-
vidual addresses. This way the data is always duplicated in both sets. For testing purposes, the parity bits can be individually
inverted during a write, and the writing to one of the sets can be disabled. This functionality is controlled through %asr16.

2.6.2 Floating Point Unit (FPU) register file
The FPU register file is implemented in SEU hardened flip-flops and does not use RAM memory.

2.6.3 Cache memories
The following sections detail how cache information is stored in physical memory.

2.6.3.1 Instruction cache tags
The instruction tags are made up by 8 valid bits, 20 tag address bits, eight MMU context bits and four parity bits. A total of
40 bits are stored in a set of three 256x16 2-port RAM blocks. There are a total of 128 instruction tags; therefore, addresses
128 - 255 of the RAM blocks are not used. Instruction cache tags have the following allocation.

Table 16. Instruction Cache Tags

BITS USAGE

47-40 Unused and tied to ground

39-36 Parity
Bit 39: XOR [35:20]
Bit 38: XOR [19:12]
Bit 37: XOR [11:8]
Bit 36: XOR [7:0]

35-28 MMU context

27-8 Tag address

7-0 Valid
0: Word not valid
1: Word valid

 37

2.6.3.2 Data cache tags
The data tags are made up by four valid bits, 20 tag address bits, eight MMU context bits and four parity bits. A total of 36
bits are stored in a set of three 256x16 2-port RAM blocks. There are a total of 256 data tags, so all locations of the data tag
RAM blocks are used. Data cache tags have the following allocation.

2.6.3.3 Instruction and data cache data memory
The data part of the instruction and data caches consist of 32-data bits and four parity bits. They are stored in a 40-bit set
made up by two 1024x20 RAM blocks. The bits are allocated as follows:

Table 17. Data Cache Tags

BITS USAGE

47-36 Unused and tied to ground

35-32 Parity
Bit 39: XOR [31:16]
Bit 38: XOR [15:8]
Bit 37: XOR [7:4]
Bit 36: XOR [3:0]

31-24 MMU context

23-4 Tag address

3-0 Valid
0: Word not vaid
1: Word valid

Table 19. Instruction and Data Cache Memory

BITS USAGE

39-36 Unused and tied to ground

35-32 Parity
Bit 35: XOR [31:24]
Bit 34: XOR [23:6]
Bit 33: XOR [15:8]
Bit 32: XOR [7:0]

31-0 Data

38

3.0 Memory Controller with EDAC

3.1 Overview
The memory controller provides a bridge between external memory and the AHB bus. The memory controller can handle
four types of devices: PROM, asynchronous static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped
I/O devices (I/O). The PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The EDAC pro-
vides single-error correction and double-error detection for each 32-bit memory word.

The memory controller is configured through three configuration registers accessible via an APB bus interface. The external
data bus can be configured in 8-, 16-, or 32-bit mode depending on application requirements. The controller decodes three
address spaces on the AHB bus (PROM, I/O, and SRAM/SDRAM).

External chip-selects are provided for two PROM banks, one I/O bank, five SRAM banks and two SDRAM banks. Figure 11
below shows how the connection to the different device types is made.

Figure 11. FTMCTRL Connected to Different Types of Memory Devices

CS
OE
WE

A
DPROM

CS
OE
WE

I/O

CS
OE
WE

SRAM
RAMS[4:0]

RAMOE[4:0]
RWE[3:0]

ROMS[1:0]
OE

WRITE

IOS

A D

FTMCTRL

ADDR[27:0]
DATA[31:0]

RAS
CAS
WE

SDRAMSDRAS
SDCAS
SDWE

DQMSDDQM[3:0]

CSNSDCS[1:0]

AHBAPB

MBENMBE[3:0]

APB

AHB

CB

CB

A
D

A
D
CB

A
D
CB

CB[7:0]

 39

3.2 PROM access
Two PROM chip-select signals are provided for the PROM area: ROMS[1:0]. ROMS[0] is asserted when the lower half of
the PROM area are addressed while ROMS [1] is asserted for the upper half.

A read access to PROM consists of two data cycles and between 0 and 30 waitstates. The read data (and optional EDAC
check-bits CB[7:0])are latched on the rising edge of the clock on the last data cycle. On non-consecutive accesses, a lead-out
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of PROM devices. See Section 3.16 for
timing diagram examples of PROM accesses.

3.3 Memory mapped I/O
Accesses to I/O have similar timing to the PROM accesses. The I/O select signal IOS is delayed one clock to allow for a sta-
ble address before it is asserted. See Section 3.16 for timing diagram examples of I/O accesses.

3.4 SRAM access
The SRAM area is divided on up to five RAM banks. The size of banks 1-4 (RAMS[3:0]) is programmed in the RAM bank-
size field (MCFG2[12:9]) and can be set in binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (RAMS[4]) decodes the
upper 512 Mbyte. A read access to SRAM consists of two data cycles and between zero and three waitstates. The read data
(and optional EDAC check-bits CB[7:0]) are latched on the rising edge of the clock on the last data cycle. Accesses to
RAMS[4] can further be stretched by de-asserting BRDY until the data is available. On non-consecutive accesses, a lead-out
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of memories. See Section 3.16 for tim-
ing diagram examples of SRAM accesses.

For read accesses to RAMS[4:0], a separate output enable signal (RAMOE[n]) is provided for each RAM bank and only
asserted when that bank is selected. A write access is similar to the read access, but takes a minimum of three cycles.
Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the memory uses a common
write strobe for the full 16- or 32-bit data, the read-modify-write bit MCFG2 should be set to enable read-modify-write
cycles for sub-word writes. See Section 3.16 for timing diagram examples of SRAM accesses.

3.5 8-bit and 16-bit PROM and SRAM access
To support applications with low memory and performance requirements efficiently, the SRAM and PROM areas can be
individually configured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory configura-
tion registers. Since read access to memory is always done on 32-bit word basis, read access to 8-bit memory will be trans-
formed in a burst of four read cycles while access to 16-bit memory will generate a burst of two 16-bits reads. During writes,
only the necessary bytes will be writen. The following figures show interface examples with 8-bit, 16-bit, and 32-bit PROM
and SRAM.

40

Figure 12. 8-bit Memory Interface Example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

RAMS[0]
RAMOE[0]

RWE[0]

ROMS[0]
OE

A D

MEMORY

ADDR[27:0]

DATA[31:24]

D[31:24]

D[31:24]

A[25:0]

A[25:0]

WRITE

8-bit PROM

8-bit RAMCONTROLLER

Figure 13. 16-bit Memory Interface Example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

RAMS[0]
RAMOE[0]

RWE[1:0]

ROMS[0]
OE

A D

ADDR[27:0]

DATA[31:16]

D[31:16]

D[31:16]

A[26:1]

A[26:1]

WRITE

16-bit PROM

16-bit RAM

MEMORY
CONTROLLER

 41

In 8-bit mode, the PROM/SRAM devices should be connected to the data bus DATA[31:24]. The LSB address bus should
be used for addressing (ADDR[25:0]). In 16-bit mode, DATA[31:16] should be used as data bus and ADDR[26:1] as
address bus. EDAC protection is not available in 16-bit mode.

3.6 8-bit and 16-bit I/O access
Similar to the PROM/SRAM areas, the I/O area can also be configured to 8- or 16-bits mode. However, the I/O device will
not be accessed by multiple 8/16 bit accesses as the memory areas, but only with one single access just as in 32-bit mode. To
access an I/O device on an 8-bit bus, LDUB/STB instructions should be used. To accesses an I/O device on a 16-bit bus,
LDUH/STH instructions should be used.

3.7 Burst cycles
To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in burst mode. Burst
transfers will be generated when the memory controller is accessed using an AHB burst request. These include instruction
cache-line fills, double loads and double stores. The timing of a burst cycle is identical to the programmed basic cycle with
the exception that during read cycles, the lead-out cycle will only occur after the last transfer. Burst cycles will not be gener-
ated to the I/O area.

3.8 SDRAM access
3.8.1 General
Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compatible devices. The
SDRAM controller supports 64M, 256M and 512M devices with 8-12 column-address bits and up to 13 row-address bits.
The size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The SDRAM controller
operation is controlled through MCFG2 and MCFG3. Both 32- and 64-bit data bus widths are supported allowing the inter-
face of 64-bit DIMM modules. The memory controller can be configured to use either a shared or separate bus connecting
the controller and SDRAM devices. See Section 3.17 for timing diagram examples of SDRAM accesses.

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

RAMS[0]
RAMOE[0]

RWE[3:0]

ROMS[0]
OE

A D

ADDR[27:0]

DATA[31:0]

D[31:0]

D[31:0]

 A[27:2]

A[27:2]

WRITE

32-bit PROM

16-bit RAM

MEMORY
CONTROLLER

Figure 14. 32-bit Memory Interface Example

42

3.8.2 Address mapping
Two SDRAM chip-select signals are used for address decoding. SDRAM area is mapped into the upper half of the RAM
area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is enabled and mapped into
upper half of the RAM area, as long as the SRAM disable bit is not set. If the SRAM disable bit is set, all access to SRAM is
disabled and the SDRAM banks are mapped into the lower half of the RAM area.

3.8.3 Initialization
When the SDRAM controller is enabled, it automatically performs the SDRAM initialization sequence of one PRE-
CHARGE command, eight AUTO-REFRESH command and LOAD-MODE-REG command on both banks simultaneously.
The controller programs the SDRAM to use page burst on read and single location access on write.

3.8.4 Configurable SDRAM timing parameters
To provide optimum access cycles for different SDRAM devices (and at different frequencies), three SDRAM parameters
can be programmed via MCGF2: TCAS, TRP and TRFCD. The value of these field affects the SDRAM timing as described
in Table 20.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled, the remaining SDRAM
timing parameters will also be met. The table below shows typical settings for 100 and 133 MHz operation and the resulting
SDRAM timing (in ns).

3.9 Refresh
The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH command to both SDRAM
banks. The period between the commands (in clock periods) is programmed in the refresh counter reload field in the
MCFG3 register. Depending on SDRAM type, the required period is typically 7.8 or 15.6 ms (corresponding to 780 or 1560
clocks at 100 MHz). The generated refresh period is calculated as ((reload value)+1)/sysclk. The refresh function is enabled
by setting bit 31 in MCFG2.

3.9.1 SDRAM commands
The controller can issue three SDRAM commands by writing to the SDRAM command field in MCFG2: PRE-CHARGE,
AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command is issued, the CAS delay as programmed in
MCFG2 will be used and remaining fields are fixed: page read burst, single location write, sequential burst. The command
field clears after a command has been executed. When changing the value of the CAS delay, a LOAD-MODE-REGISTER
command should be generated at the same time. Note: When issuing SDRAM commands, the SDRAM refresh must be dis-
abled.

3.9.2 Read cycles
A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed by a READ command
after the programmed CAS delay. A read burst is performed if a burst access has been requested on the AHB bus. The read
cycle is terminated with a PRE-CHARGE command, no banks are left open between two accesses.

3.9.3 Write cycles
Write cycles are performed similarly to read cycles, but WRITE commands are issued after activation. A write burst on the
AHB bus will generate a burst of write commands without idle cycles in-between.

Table 20. SDRAM Example Programming

SDRAM SETTINGS tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

 43

3.9.4 Address bus
The memory controller can be configured to either share the address and data buses with the SRAM or to use separate
address and data buses. When the buses are shared, the address bus of the SDRAMs should be connected to ADDR[14:2],
the bank address to ADDR[16:15]. The MSB part of ADDR[14:2] can be left unconnected if not used. When separate buses
are used, the SDRAM address bus should be connected to SA[12:0] and the bank address to SA[14:13].

3.9.5 Data bus
SDRAM can be connected to the memory controller through the common or separate data bus. If the separate bus is used,
the width is configurable to 32- or 64-bits. The 64-bit data bus allows the 64-bit SDRAM devices to be connected using the
full data capacity of the devices. 64-bit SDRAM devices can be connected to 32-bit data bus if the 64-bit data bus is not
available; in this case only half the full data capacity will be used. There is a drive signal vector and separate data vector
available for SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove timing
problems with the output delay when a separate SDRAM bus is used.

3.9.6 Clocking
The SDRAM memory is clocked by the SDCLK output. This output is in phase with the internal system clock and provides
the maximum margin for setup and hold on the external signals.

3.9.7 Initialization
Each time the SDRAM is enabled (by setting bit 14 in MCFG2), an SDRAM initialization sequence will be sent to both
SDRAM banks. The sequence consists of one PRECHARGE command, eight AUTO-REFRESH command and one
LOAD-COMMAND-REGISTER command.

3.10 Memory EDAC
The FTMCTRL is provided with an error detected and correction (EDAC) controller that can correct one error and detect
two errors in a 32-bit word. For each word, a 7-bit checksum is generated according to the equations below. A correctable
error will be handled transparently by the memory controller, but will add one waitstate to the access. If an un-correctable
error (double-error) is detected, the current AHB cycle will end with an error response. The EDAC can be used during
access to PROM, SRAM and SDRAM areas by setting the corresponding EDAC enable bits in the MCFG3 register. The
equations below show how the EDAC checkbits are generated:

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

If the memory is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used, but it is still possible to use EDAC
protection. This is done by allocating the top 25% of the memory bank to the EDAC checksums. If the EDAC is enabled, a
read access reads the data bytes from the nominal address and the EDAC checksum from the top part of the bank. A write
cycle is performed the same way. In this way, 75% of the bank memory is available as program or data memory, 18.75% is
used for checkbits and the top 6.25% is unused. The size of the memory bank is determined from the settings in MCFG1 and
MCFG2. The EDAC cannot be used on memory areas configured in 16-bit mode.

The operation of the EDAC can be tested trough the MCFG3 register. If the WB (write bypass) bit is set, the value in the
TCB field replaces the normal checkbits during memory write cycles. If the RB (read bypass) is set, the memory checkbits
of the loaded data will be stored in the TCB field during memory read cycles. Note: when the EDAC is enabled, the RMW
bit in memory configuration register 2 must be set.

44

3.11 Using BRDY
The BRDY signal can be used to stretch access cycles to the PROM and I/O areas and the SRAM area decoded by
RAMS[4]. The accesses will always have at least the pre-programmed number of waitstates as defined in registers MCFG1
and MCFG2, but will be further stretched until BRDY is asserted. BRDY should be asserted in the cycle preceding the last
one. If bit 29 in MCFG1 is set, BRDY can be asserted asynchronously with the system clock. In this case, the read data must
be kept stable until the de-assertion of OE/RAMOE. The use of BRDY can be enabled separately for the PROM, I/O and
RAMS[4] areas. See Section 3.16 for timing diagram examples with BRDY.

3.12 Access errors
An access error can be signalled by asserting the BEXC signal which is sampled together with the data. If the usage of
BEXC is enabled in register MCFG1, an error response will be generated on the internal AHB bus. BEXC can be enabled or
disabled through register MCFG1 and is active for all areas (PROM, I/O an RAM). See Section 3.16 for timing diagram
examples using BEXC.

3.13 Attaching an external DRAM controller
To attach an external DRAM controller, RAMS[4] should be used since it allows the cycle time to vary through the use of
BRDY. In this way, delays can be inserted as required for opening of banks and refresh.

3.14 Registers
The core is programmed through registers mapped into APB address space.

Table 21. FTMCTRL Memory Controller Registers

REGISTER APB ADDRESS

Memory configuration register 1 (MCFG1) 0x80000000

Memory configuration register 2 (MCFG2) 0x80000004

Memory configuration register 3 (MCFG3) 0x80000008

 45

3.14.1 Memory configuration register 1 (MCFG1)
Memory configuration register 1 is used to program the timing of ROM and I/O accesses.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 Reserved

30 PB 0 PROM area bus enable
0: BRDY disabled for PROM area.
1: BRDY enabled for PROM area.

29 AB 0 Asynchronous bus ready
0: BRDY is synchronous relative to system clock.
1: BRDY input can be asserted without relation to the system clock.

28-27 IW I/O data bus width
00: 8 bits
01: 16 bits
10: 32 bits
11: Not used

26 IB 0 I/O area bus ready enable
0: BRDY disabled for I/O area.
1: BRDY enabled for I/O area.

25 BE 0 Bus error enable
0: BEXC disabled
1: BEXC enabled

24 Reserved

23-20 IW Number of waitstates during I/O accesses
0000: 0 waitstates
0001: 1 waitstates
0010: 2 waitstates
...
1111: 15 waitstates

19 IE I/O enable
0: Access to memory mapped I/O space is disabled.
1: Access to memory mapped I/O space is enabled.

18 Reserved

17-14 PZ Size of each PROM bank defined as 8*2PZ kB
0000: 8kB
0001: 16kB
0010: 32kB
...
1111: 256MB

MCFG1

31 30 29 28 27 26 25 24 23 20 19 18 17 14 13 12 11 10 9 8 7 4 3 0
- PB AB IW IB BE - IW IE - PZ - PE - PD PW PR

Figure 15. Memory Configuration Register 1

 Address = 0x80000000

46

3.14.2 Memory configuration register 2 (MCFG2)
Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

13-12 Reserved

11 PE PROM write enable
0: PROM write cycles disabled.
1: PROM write cycles enabled.

10 Reserved

9-8 PD Data width of the PROM area
PWIDTH is set to the value GPIO[1:0] following a reset.
00: 8 bits
01: 16 bits
10: 32 bits
11: Not used

7-4 PW Number of waitstates during PROM write cycles
PWS is set to the maximum 15 waitstates following a reset.
0000: 0
0001: 2
0010: 4
...
1111: 30

3-0 PR Number of waitstates during PROM read cycles
PRS is set to the maximum 15 waitstates following a reset.
0000: 0
0001: 2
0010: 4
...
1111: 30

MCFG2

31 30 29 27 26 25 23 22 21 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 3 2 1 0
DR DP DF D

C
DZ DS DD BW DE SI SZ - SB RM SD SW SR

Figure 16. Memory Configuration Register 2

 Address = 0x80000004

 47

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 DR SDRAM refresh
0: SDRAM refresh disable
1: SDRAM refresh enabled

30 DP SDRAM TRP parameter
0: tRP = 2 system clocks
1: tRP = 3 system clocks

29-27 DF SDRAM TRFC parameter
tRFC = 3 + DF system clocks

26 DC SDRAM CAS parameter
When changed, a LOAD-COMMAND-REGISTER command must
be issued at the same time and also sets RAS/CAS delay (tRCD).
0: CAS = 2 cycle delay
1: CAS = 3 cycle delay

25-23 DZ Bank size for SDRAM chip selects defined as 4MB*2DZ

000: 4MB
001: 8MB
010: 16MB
...
111: 512MB

22-21 DS SDRAM column size
When SDRAMDZ is 111b the column size is 256*2DS. Otherwise,
the column size is 2048.
00: 256
01: 512
10: 1024
11: 4096

20-19 DD SDRAM command
Writing a non-zero value will generate an SDRAM command. The
field is reset to 00b after command has been executed.
01: PRECHARGE
10: AUTO-REFRESH
11: LOAD-COMMAND-REGISTER

18 BW Memory controller data bus width.
0: 32-bit
1: 64-bit
Read=0; Write=don’t care.

17-15 Reserved

14 DE SDRAM enable
0: SDRAM controller disabled
1: SDRAM controller enabled

48

3.14.3 Memory configuration register 3
MCFG3 is contains the reload value for the SDRAM refresh counter and to control and monitor the memory EDAC. It also
contains the configuration of the register file EDAC.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

13 SI SRAM disable
If set together with bit 14 the SRAM will be disabled.
DE=0
x: SRAM enabled
DE=1
0: SRAM enabled
1: SRAM disabled
x=don’t care

12-9 SZ Size of each SRAM bank as 8*2SZ kB
0000: 8kB
0001: 16kB
0010: 32kB
...
1111: 256MB

8 Reserved

7 SB SRAM area bus ready enable
0: BRDY disabled for SRAM area
1: BRDY enabled for SRAM area

6 RM Enable read-modify-write cycles on sub-word writes to 16- and 32-
bit areas with common write strobe (no byte write strobe).
0: Disabled
1: Enabled

5-4 SD Data width of the SRAM area
00: 8
01: 16
1x: 32
x=don’t care

 3-2 SW Number of waitstates during SRAM write cycles
00: 0
01: 1
10: 2
11: 3

1-0 SR Number of waitstates during SRAM read cycles
00: 0
01: 1
10: 2
11: 3

 49

MCFG3 Address = 0x80000008

The period between each AUTO-REFRESH command is calculated as follows:
tREFRESH = ((reload value) + 1) / SYSCLK

3.15 Vendor and device identifiers
The core has vendor identifier 0x01 (GAISLER) and device identifier 0x054. For description of vendor and device identifi-
ers, see GRLIB IP Library User’s Manual at www.gaisler.com/products/grlib/grlib.pdf.

31 30 29 28 27 26 11 10 9 8 7 0
RFC -- ME RLDVAL WB RB SE PE TCB [7:0]

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-30 RFC Number of checkbits are used for the register file
00: 0
01: 1
10: 2
11: 7 (EDAC)

29-28 Reserved

27 ME Memory EDAC
Indicates if memory EDAC is present
Read = 1; Write = Don’t care

26-12 RLDVAL SDRAM refresh counter reload value
The period between each AUTO-REFRESH command is calculated
as follows:
tREFRESH = ((RLDVAL) + 1) / SYS_CLK

11 WB EDAC diagnostic write bypass
0: Normal operation
1: EDAC write bypassed

10 RB EDAC diagnostic read bypass
0: Normal operation
1: EDAC read bypassed

9 SE Enable EDAC checking of the SRAM area
0: EDAC checking of the SRAM area disabled
1: EDAC checking of the SRAM area enabled

8 PE Enable EDAC checking of the PROM area
At reset, this bit is initialized with the value GPIO[2].
0: EDAC checking of the PROM area disabled
1: EDAC checking of the PROM area enabled

7-0 TCB[7:0] Test checkbits
This field replaces the normal checkbits during store cycles when
WB (bit 11) is set. TCB is also loaded with the memory checkbits
during load cycles when RB (bit 10) is set.

Figure 17. Memory Configuration Register 3

50

3.16 PROM, SRAM, and memory mapped I/O timing diagrams
This section shows typical timing diagrams for PROM, SRAM and I/O accesses. These timing diagrams are functional, and
are intended to show the relationship between control signals and SDCLK. The actual values of the timing parameters can
be found in Chapter 4 of the UT699 datasheet.

t6
t5

t6
t5

t6
t5

t6
t5

t6
t5

t1t1t1t1

t1t1t1t1

t1t1t1t1

t1t1t1t1

Lead-Out

Data2

Lead-OutLead-Out

Data2Data1

Lead-Out

Data1

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

CB[7:0]

BEXC

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 18. PROM and SRAM 32-bit Read Cycle

 51

t6
t5

t6
t5

t6
t5

t6
t5

t1t1

t1t1

t1t1

t1t1

Lead-OutData2 Lead-OutData2Data1Data1

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

CB[7:0]

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 19. PROM and SRAM 32-bit Read Cycle Consecutive Access

52

t6
t5

t6
t5

t6
t5

t1t1

t1t1

t1t1

t1t1

Data

Lead-OutBRDY Lead-OutBRDYnWSnWS

Data

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

BRDY

DATA[31:0]

CB[7:0]

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 20. PROM and SRAM 32-Read Cycle with Wait States and BRDY

 53

Figure 21. PROM and SRAM 32-Read Cycle Wait States and Asynchronous BRDY

t6
t5

t6
t5

t7

t1t1

t1t1

t1t1

t1t1

Data

Lead-OutBRDY Lead-OutBRnWSnWS

Data

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

BRDY

DATA[31:0]

CB[7:0]

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

54

t6
t5

t6
t5

t6
t5

t6
t5

t1t1t1t1

t1t1t1t1

t1t1t1t1

t1t1t1t1

Data2

Lead-OutLead-Out

Data2Data1

Lead-OutLead-Out

Data1

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[26:1]

DATA[31:16]

CB[7:0]

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 22. PROM and SRAM 16-bit Read Cycle

 55

t1
t1

t1
t1

t1
t1

t1
t1

t1t1t1t1t1t1t1t1

t1t1t1t1t1t1t1t1

t1t1t1t1t1t1t1t1

t1t1t1t1t1t1t1t1

Data4

Lead-OuLead-Ou

Data4Data3

Lead-OutLead-Out

Data3Data2

Lead-OutLead-Out

Data2Data1

Lead-OutLead-Out

Data1

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[25:0]

DATA[31:24]

RAMS[4:0]

RWE[3:0]

RAMOE[4:0]

Figure 23. PROM and SRAM 8-bit Read Cycle

56

t6
t5

t3t2

t3t2

t1t1

t1t1

t2t1

Data

Lead-OutLead-OutLead-In

Data

Lead-In

CLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

CB[7:0]

BEXC

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 24. PROM and SRAM 32-bit Write Cycle

 57

t6
t5

t3t2t3t2

t3t2t3t2

t1t1

t1t1t1t1

t1t1

Data2

Lead-OutLead-OutLead-In

Data2

Lead-In

Data1

Lead-OutLead-OutLead-In

Data1

Lead-In

SDCLK

ROMS[1:0]

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

CB[7:0]

BEXC

RAMS[4:0]

RAMOE[4:0]

RWE[3:0]

Figure 25. PROM and SRAM 32-bit Write Cycle Consecutive Access

58

t6
t5

t6
t5

t1t1

t1t1

t1t1

t1t1

Data

Lead-OutLead-OutLead-InLead-In

Data

SDCLK

IOS

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

BEXC

Figure 26. Memory Mapped I/O 32-bit Read Cycle

 59

t6
t5

t6
t5

t1t1

t1t1

t1t1

t1t1

Data

Lead-OutLead-OutLead-InLead-In

Data

SDCLK

IOS

OE

READ

WRITE

ADDR[27:0]

DATA[15:0]

BEXC

Figure 27. Memory Mapped I/O 16-bit Read Cycle

60

t6
t5

t6
t5

t1t1

t1t1

t1t1

t1t1

Data

Lead-OutLead-OutLead-InLead-In

Data

SDCLK

IOS

OE

READ

WRITE

ADDR[27:0]

DATA[7:0]

BEXC

Figure 28. Memory Mapped I/O 8-bit Read Cycle

 61

t6
t5

t3t2

t1t1

t1t1

t‘t1

Data

Lead-OutLead-OutLead-In

Data

Lead-In

SDCLK

IOS

OE

READ

WRITE

ADDR[27:0]

DATA[31:0]

BEXC

Figure 29. Memory Mapped I/O 32-bit Write Cycle

62

3.17 SDRAM timing diagrams
This section shows typical timing diagrams for SDRAM accesses. These timing diagrams are functional, and are intended to
show the relationship between control signals and the SDCLK. The actual values of the timing parameters can be found in
Chapter 4 of the UT699 datasheet.

t6
t5

t6
t5

t1t1

t1t1t1t1t1t1

t1t1t1t1t1t1

t1t1

t1t1

t1t1t1t1t1t1

t1t1t1t1t1t1t1t1

tRC

tRP
tRAS

tRPtCAStCAStRCD

tRC
tRAS

tRCD

SDCLK

SDCS[1:0]

SDRAS

SDCAS

SDWE

ADDR[14:2]

ADDR[16:15]

SDDQM[3:0]

DATA[31:0]

CB[7:0]

Figure 30. SDRAM Read Cycle

 63

t3t2

t3t2

t1t1

t1t1t1t1t1t1

t1t1t1t1t1t1

t1t1t1t1

t1t1

t1t1t1t1t1t1

t1t1t1t1t1t1t1t1

tRC

tRP
tRAS

tRPtCAStCAStRCD

tRC
tRAS

tRCD

SDCLK

SDCS[1:0]

SDRAS

SDCAS

SDWE

ADDR[14:2]

ADDR[16:15]

SDDQM[3:0]

DATA[31:0]

CB[7:0]

Figure 31. SDRAM Write Cycle

64

4.0 AHB Status Registers

4.1 Overview
The AHB status registers store information about AHB accesses triggering an error response. There is a status register
(AHBSTAT) and a failing address register (AHBADDR). Both are contained in a module accessed from the APB bus.

4.2 Operation
The AHB status module monitors AHB bus transactions and stores the current HADDR, HWRITE, HMASTER and HSIZE
internally. It is automatically enabled after power-on reset and monitors the AHB bus until an error response (HRESP =
“00”) is detected. When the error is detected, the status and address register content is frozen and the New Error (NE) bit is
set to one. At the same time, interrupt 1 is generated. To start monitoring the bus again, the NE bit must be cleared by soft-
ware.

The status registers are also frozen when the memory controller signals a correctable error even though HRESP is “00” in
this case. The software can then scrub the corrected address in order to prevent error build-up and un-correctable multiple
errors.

4.3 Registers
Figure 32 shows the status register and failing address register. The registers are accessed from the APB bus.

AHBSTAT Address = 0x80000F00

31 10 9 8 7 6 3 2 0
RESERVED CE NE HW HM HS

BIT
NUMBER(S) BIT NAME RESET

STATE DESCRIPTION

31-10 Reserved Reserved

9 CE Correctable error. Set if the memory controller signaled a correct-
able error.

8 NE New error. Deasserted at start-up and after reset. Asserted when an
error is detected. Reset by writing a zero to it.

7 HW The HWRITE signal of the AHB transaction that caused the error.

6-3 HM The HMASTER signal of the AHB transaction that caused the
error.

2-0 HS The HSIZE signal of the AHB transaction that caused the error.

BIT
NUMBER(S) BIT NAME RESET

STATE DESCRIPTION

31-0 HADDR The failing address of the AHB transaction that caused the error.

Figure 32. AHB Status Register

AHBADDR Address=0x80000F04

31 0
 HADDR

Figure 33. AHB Failing Address Register

 65

5.0 Interrupt Controller

5.1 Overview
The interrupts generated by on-chip units are all forwarded to the interrupt controller. The controller core then propagates
the interrupt with highest priority to the LEON 3FT processor.

5.2 Operation
5.2.1 Interrupt prioritization
The interrupt controller receives all on-chip interrupts. Each interrupt can be assigned to one of two levels (0 or 1) as pro-
grammed in the interrupt level register. Level 1 has higher priority than level 0. The interrupts are prioritized within each
level with interrupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will be for-
warded to the processor. If no unmasked pending interrupt exists on level 1, then the highest unmasked interrupt from level
0 will be forwarded.

Interrupts are prioritized at system level while masking and forwarding of interrupts is done for each processor separately.
Each processor in an multi-processor system has separate interrupt mask and force registers. When an interrupt is signalled
on the AMBA bus, the interrupt controller prioritizes interrupts, perform interrupt masking for each processor according to
the mask in the corresponding mask register, and forward the interrupts to the processors.

When the processor acknowledges the interrupt, the corresponding pending bit automatically clears. Interrupt can also be
forced by setting a bit in the interrupt force register. In this case, the processor acknowledgement clears the force bit rather
than the pending bit. After reset, the interrupt mask register is set to all zeros while the remaining control registers are unde-
fined.

Note: Interrupt 15 cannot be masked by the LEON 3FT processor and should be used with care as most operating systems
do not safely handle this interrupt.

Figure 34. Interrupt Controller Block Diagram

IRQ
Pending

15 4 LEON 3FT Interrupt

Priority
select

IRQ
mask

IRQ
Force

Priority
encoder

Incoming IRQ
Control Logic [3:0]

66

5.2.2 Interrupt allocation
The following table indicates the interrupt assignment in UT699.

5.3 Registers
Table 23 shows the Interrupt Controller registers. The base address of the registers is 0x80000200.

Table 22. Interrupt Assignment

CORE INTERRUPT # FUNCTION

AHBSTAT 1 AHB bus error

APBUART 2 UART1 RX/TX interrupt

GRPCI 4 PCI DMA Interrupts

CANOC 5 CAN RX/TX data interrupt

GPIO 1 - 15 External I/O interrupt

GPTIMER 6, 7, 8, 9 Timer underflow interrupts

GRSPW1 10 SpaceWire RX/TX data interrupt

GRSPW2 11 SpaceWire RX/TX data interrupt

GRSPW3 12 SpaceWire RX/TX data interrupt

GRSPW4 13 SpaceWire RX/TX data interrupt

Table 23. IRQ Controller Registers

REGISTER APB Address

Interrupt level register (ILR) 0x80000200

Interrupt pending register (IPR) 0x80000204

Interrupt force register (IFR) 0x80000208

Interrupt clear register (ICR) 0x8000020C

Processor status register (PSR) 0x80000210

Interrupt mask register (IMR) 0x80000240

 67

5.3.1 Interrupt level register

5.3.2 Interrupt pending register

5.3.3 Interrupt force register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 IL[15:1] Interrupt level for interrupt IL[n]
0: Interrupt level 0
1: Interrupt level 1

0 Reserved

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-17 Reserved

16-1 IP[15:1] Interrupt pending for interrupt IP[n]
0: Interrupt not pending
1: Interrupt pending

0 Reserved

ILR Address = 0x80000200

31 17 16 1 0
 RESERVED IL[15:1] -

Figure 35. Interrupt Level Register

IPR Address = 0x80000204

31 16 15 1 0
 RESERVED IP[15:1] -

Figure 36. Interrupt Pending Register

IFR Address = 0x80000208

31 16 15 1 0
 RESERVED IF[15:1] -

Figure 37. Interrupt Force Register

68

5.3.4 Interrupt clear register

5.3.5 Interrupt mask register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 IF[15:1] Force interrupt IF[n]
0: Normal operation
1: Force interrupt

0 Reserved

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 IC[15:1] Clear interrupt IC[n]
0: Normal operation
1: Clear interrupt

0 Reserved

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 IM[15:1] Interrupt mask for IM[n]
0: Interrupt is masked
1: Interrupt is enabled

0 Reserved

ICR Address = 0x8000020C

31 16 15 1 0
 RESERVED IC[15:1] -

Figure 38. Interrupt Clear Register

IMR Address = 0x80000240

31 16 15 1 0
RESERVED IC[15:1] -

Figure 39. Interrupt Mask Register

 69

6.0 UART with APB interface

6.1 Overview
A UART is provided for serial communications. The UART supports data frames with eight data bits, one optional parity bit,
and one stop bit. To generate the bit-rate, the UART has a programmable 12-bit clock divider. Two 8-byte FIFOs are used for
the data transfers between the bus and UART. Figure 40 shows a block diagram of the UART.

6.2 Operation

6.2.1 Transmitter operation
The transmitter is enabled through the TE bit in the UART control register UARTCTR. Data that is to be transferred is stored
in the transmitter FIFO by writing to the data register UARTDTR [7:0]. When ready to transmit, data is transferred from the
transmitter FIFO to the transmitter shift register and converted to a serial stream on the transmitter serial output pin (TXD).
It automatically sends a start bit followed by eight data bits, an optional parity bit, and one stop bit (Figure 41). The least sig-
nificant bit of the data is sent first.

RXD TXDReceiver shift register Transmitter shift register

APB

Serial port
Controller8*bitclkBaud-rate

generator

 Transmitter FIFO

 Receiver FIFO

Figure 40. APB UART Block Diagram

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

Figure 41. UART Data Frames

70

Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO, the transmitter serial
data output remains high and the transmitter shift register empty bit (TS) will be set in the UART status register. Transmis-
sion resumes and the TS is cleared when a new character is loaded into the transmitter FIFO. When the FIFO is empty the
TE bit is set in the status register UARTSTR. If the transmitter is disabled, it immediately stops any active transmissions
including the character currently being shifted out from the transmitter shift register. The transmitter holding register may
not be loaded when the transmitter is disabled or when the transmitter FIFO is full. If this is done, data might be overwritten
and one or more frames lost.

The TF status bit (not to be confused with the TF control bit) is set if the transmitter FIFO is currently full and the TH bit is
set as long as the FIFO is less than half-full, i.e., less than half of entries in the FIFO contain data. The TF control bit in the
control register UARTCTR enables FIFO interrupts when set. The status register also contains a counter (TCNT) showing
the current number of data entries in the transmitter FIFO.

6.2.2 Receiver operation
The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control register. The receiver
looks for a high to low transition of a start bit on the receiver serial data input pin. If a transition is detected, the state of the
serial input is sampled a half bit clock later. If the serial input is sampled high, the start bit is invalid and the search for a
valid start bit continues. If the serial input is still low, a valid start bit is assumed and the receiver continues to sample the
serial input at one bit time intervals (at the theoretical center of the bit) until the proper number of data bits and the parity bit
have been assembled and one stop bit has been detected. The serial input is shifted through an 8-bit shift register where all
bits need the same value before the new value is taken into account, effectively forming a low-pass filter with a cut-off fre-
quency of 1/8 system clock.

The receiver also has a 8-byte receiver FIFO identical to the transmitter. FIFO data from the receiver FIFO is removed by
reading the data register UARTDTR [7:0].

During reception, the least significant bit is received first. The data is then transferred to the receiver FIFO and the data
ready (DR) bit is set in the UART status register as soon as the FIFO contains at least one data frame. The parity, framing
and overrun error bits are set at the received byte boundary at the same time as the receiver ready bit is set. The data frame is
not stored in the FIFO if an error is detected. Also, the new error status bits are OR’d with the old values before they are
stored into the status register. Thus, they are not cleared until written to with zeros from the APB bus. If both the receiver
FIFO and shift registers are full when a new start bit is detected, then the character held in the receiver shift register will be
lost and the overrun bit will be set in the UART status register.

The RF status bit (not to be confused with the RF control bit) is set when the receiver FIFO is full. The RH status bit is set
when the receiver FIFO is half-full (at least half of the entries in the FIFO contain data frames). The RF control bit in the
control register UARTCTR enables receiver FIFO interrupts when set. A RCNT field is also available showing the current
number of data frames in the FIFO.

6.3 Baud-rate generation
Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The scaler is clocked by the system
clock and generates a UART tick each time it underflows. It is reloaded with the value of the UART scaler reload register
after each underflow. The resulting UART tick frequency should be eight times the desired baud-rate.

SCALER_RELOAD_VALUE = SYS_CLK/(BAUD_RATE*8)

6.3.1 Loop back mode
If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode, the transmitter output is
internally connected to the receiver input. It is then possible to perform loop back tests to verify operation of receiver, trans-
mitter and associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid sending out
data.

 71

6.3.2. Interrupt generation
Two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For the transmitter, normal interrupts
are generated when transmitter interrupts are enabled (TI), the transmitter is enabled and the transmitter FIFO goes from
containing data to being empty. FIFO interrupts are generated when the FIFO interrupts are enabled (TF), transmissions are
enabled (TE) and the UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts work in the same way.
Normal interrupts are generated in the same manner as for the holding register. FIFO interrupts are generated when receiver
FIFO interrupts are enabled, the receiver is enabled and the FIFO is half-full. The interrupt signal is continuously driven
high as long as the receiver FIFO is half-full (at least half of the entries contain data frames).

6.4 UART registers
The APB UART is controlled through four registers mapped into APB address space. UART registers are mapped as fol-
lows:

6.4.1 UART data register
The UART data register provides access to the receiver and transmit FIFO register. The transmitter FIFO is accessed by
writing to the data register; the receiver FIFO is accessed by reading the data register.

UARTDTR Address=0x80000100

6.4.2 UART status register
The UART Status Register provides information about the state of the FIFO’s and error conditions.

UARTSTR Address=0x80000104

Table 24. APB UART Registers

REGISTER APB ADDRESS

UART Data Register (UARTDTR) 0x80000100

UART Status Register (UARTSTR) 0x80000104

UART Control Register (UARTCTR) 0x80000108

UART Scaler Register (UARTSCR) 0x8000010C

31 8 7 0
 RESERVED DATA[7:0]

BIT
NUMBER

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 Receiver FIFO Reading the data register accesses the receiver FIFO.

7-0 Transmitter FIFO Writing to the data register access the transmitter FIFO.

31 26 25 20 19 11 10 9 8 7 6 5 4 3 2 1 0
RCNT TCNT RESERVED RF TF RH TH FE PE OV BR TE TS DR

Figure 43. UART Status Register

Figure 42. UART Data Register

72

6.4.3 UART control register
The UART Control Register is used to enable the transmitter and receiver and control how interrupts are generated.
UARTCTR Address=0x80000108

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-26 RCNT Receiver FIFO Count
Shows the number of data frames in the Receiver FIFO.

25-20 TCNT Transmitter FIFO Count
Shows the number of data frames in the Transmitter FIFO.

19-11 Reserved

10 RF Receiver FIFO Full
Indicates that the Receiver FIFO is full.

9 TF Transmitter FIFO Full
Indicates that the Transmitter FIFO is full.

8 RH Receiver FIFO Half Full
Indicates that at least half of the FIFO is holding data.

7 TH Transmitter FIFO Half Full
Indicates that the FIFO is less than half-full.

6 FE Framing Error
Indicates that a framing error was detected.

5 PE Parity Error
Indicates that a parity error was detected.

4 OV Overrun
Indicates that one or more characters have been lost due to overrun.

3 BR Break Received
Indicates that a BREAK has been received.

2 TE Transmitter FIFO Empty
Indicates that the transmitter FIFO is empty.

1 TS Transmitter Shift Register Empty
Indicates that the transmitter shift register is empty.

0 DR Data Ready
Indicates that new data is available in the receiver holding register.

31 11 10 9 8 7 6 5 4 3 2 1 0
 RESERVED RF TF EC LB FL PE PS TI RI TE RE

Figure 44. UART Control Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-11 Reserved

10 RF Receiver FIFO Interrupt Enable
0: Receiver FIFO level interrupts disabled.
1: Receiver FIFO level interrupts enabled.

 73

6.4.4 UART scaler register
UARTSCR Address=0x800010C

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

9 TF Transmitter FIFO Interrupt Enable
0: Transmitter FIFO level interrupts disabled.
1: Transmitter FIFO level interrupts enabled.

8 Reserved

7 LB Loopback Mode
0: Disabled
1: Enabled

6 Reserved

5 PE Parity Enable
0: Parity generation and checking disabled.
1: Parity generation and checking enabled.

4 PS Parity Select
0: Even parity
1: Odd parity

3 TI Transmitter Interrupt Enable
0: No frame interrupts.
1: Interrupts generated when a frame is transmitted.

2 RI Receiver Interrupt Enable
0: No frame interrupts.
1: Interrupts generated when a frame is received.

1 TE Transmitter Enable
0: Transmitter disabled
1: Transmitter enabled

0 RE Receiver Enable
0: Receiver disabled
1: Receiver enabled

31 12 11 0
 RESERVED SCALER RELOAD VALUE

Figure 45. UART Scaler Reload Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-12 Reserved

11-0 SRV Scaler Reload Value
SRV=SYS_CLK / (BAUD_RATE*8)

74

7.0 Timer Unit

7.1 Overview
The Timer Unit implements one prescaler and four decrementing timers. The timer unit registers are accessed through the
APB bus. The unit is capable of asserting an interrupt when a timer underflows. A separate interrupt is available for each
timer.

7.2 Operation
The prescaler is clocked by the system clock and decremented on each clock cycle. When the prescaler underflows, it is
reloaded from the prescaler reload register and a timer tick is generated. Timers share the decrementer to save area. On the
next timer, tick next timer is decremented giving effective division rate equal to SCALER_RELOAD_VALUE+1.

The operation of each timer is controlled through its control register. A timer is enabled by setting the enable bit (EN) in the
control register. The timer value is then decremented on each prescaler tick. When a timer underflows, it will automatically
be reloaded with the value of the corresponding timer reload register, if the restart bit (RS) in the control register is set, oth-
erwise it will stop at -1 and reset the enable bit. Each timer signals its interrupt when the timer underflows (if the interrupt
enable bit (IE) for the current timer is set). The interrupt pending bit (IP) in the control register of the underflown timer will
be set and remain set until cleared by writing ‘0’. Timer 1 generates interrupt 6, timer 2 generates interrupt 7, timer 3 gener-
ates interrupt 8, and timer 4 generates interrupt 9.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed prescaler division factor
is 5 (SCALER_RELOAD_VALUE=4).

By setting the chain bit (CH) in the control register timer n can be chained with preceding timer n-1. Decrementing timer n
will start when timer n-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘1’ to the load bit (LD) in the control
register. Timer 4 also operates as a watchdog, driving the watchdog output signal (WDOGN) when expired.

timer 3 reload

prescaler reload

-1

prescaler value

timer 1 value

timer 2 value

timer 3 value

timer 1 reload

timer 2 reload

-1

tick

irq 6

irq 7

irq 8

timer 4 reload

timer 4 value irq 9

Figure 46. Timer Unit Block Diagram

 75

7.3 Registers

Table 25 shows the timer unit registers.

Figures 47 to 52 shows the layout of the timer unit registers.

Table 25. General Purpose Timer Unit Registers

REGISTER APB ADDRESS

Scaler Value 0x80000300

Scaler Reload Value 0x80000304

Configuration Register 0x80000308

Timer 1 Counter Value Register 0x80000310

Timer 1 Reload Value Register 0x80000314

Timer 1 Control Register 0x80000318

Timer 2 Counter Value Register 0x80000320

Timer 2 Reload Value Register 0x80000324

Timer 2 Control Register 0x80000328

Timer 3 Counter Value Register 0x80000330

Timer 3 Reload Value Register 0x80000334

Timer 3 Control Register 0x80000338

Timer 4 Counter Value Register 0x80000340

Timer 4 Reload Value Register 0x80000344

Timer 4 Control Register 0x80000348

TIMSVR Address=0x80000300

31 12 11 0
 RESERVED SCALER_VALUE

Figure 47. Scaler Value Register

TIMRVR Address=0x80000304

31 12 11 0
 RESERVED SCALER_RELOAD_VALUE

Figure 48. Scaler Reload Value Register

76

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-10 Reserved

9 DF Disable Timer Freeze
0: Timer unit can be frozen during debug mode.
1: Timer unit cannot be frozen during debug mode.

8 SI 1 Separate Interrupts
0: Single interrupt for timers.
1: Each timer generates a separate interrupt.
Read=1; Write=Don’t care.

7-3 Reserved

2-0 TIMERS Number of Implemented Timers
Read=100b; Write=Don’t care.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 Timer Counter Value Decremented by 1 for each tick, or when timer n-1 underflows if in
chain mode.

31 10 9 8 7 3 2 0
RESERVED DF SI IRQ TIMERS

Figure 49. Timer Configuration Register

TIMCVR1 Address=0x80000310
TIMCVR2 Address=0x80000320
TIMCVR3 Address=0x80000330
TIMCVR4 Address=0x80000340

31 0
TIMER_COUNTER_VALUE

Figure 50. Timer Counter Value Registers

 77

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 Timer Reload Value This value is loaded into the timer counter value register when ‘1’ is
written to bit LD in the timers control register, or when the RS bit is
set in the control register and the timer underflows.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-7 Reserved

6 DH Debug Halt
State of timer when DF=0. Read only.
0: Active
1: Frozen

5 CH Chain with preceding timer.
0: Timer functions independently
1: Decrementing timer n begins when timer (n-1) underflows.

4 IP Interrupt Pending
0: Interrupt not pending
1: Interrupt pending. Remains ‘1’ until cleared by writing ‘0’ to this
bit.

TIMRVR1 Address=0x80000314
TIMRVR2 Address=0x80000324
TIMRVR3 Address=0x80000334
TIMRVR4 Address=0x80000344

31 0
TIMER_RELOAD_VALUE

Figure 51. Timer Reload Value Registers

TIMCTR1 Address=0x80000318
TIMCTR2 Address=0x80000328
TIMCTR3 Address=0x80000338
TIMCTR4 Address=0x80000348

31 7 6 5 4 3 2 1 0
RESERVED DH CH IP IE LD RS EN

Figure 52. Timer Control Registers

78

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

3 IE Interrupt Enable
0: Interrupts disabled
1: Timer underflow signals interrupt.

2 LD Load Timer
Writing a ‘1’ to this bit loads the value from the timer reload regis-
ter to the timer counter value register.

1 RS Restart
Writing a ‘1’ to this bit reloads the timer counter value register with
the value of the reload register when the timer underflows.

0 EN Timer Enable
0: Enabled
1: Disabled

 79

8.0 General Purpose I/O Port

8.1 Overview
A general purpose I/O port is provided using the GRGPIO core from GRLIB. The unit implements a 16-bit I/O port with
interrupt support. Each bit in the port can be individually set as an input or output and can optionally generate an interrupt.
For interrupt generation, the input can be filtered for polarity and level/edge detection. The figure below shows a diagram
for one I/O line.

8.2 Operation
The I/O ports are implemented as bi-directional buffers with programmable output enable. The input from each buffer is
synchronized by two flip-flops in series to remove potential meta-stability. The synchronized values can be read out from the
I/O port data register. The output enable is controlled by the I/O port direction register. A ‘1’ in a bit position will enable the
output buffer for the corresponding I/O line. The output value driven is taken from the I/O port output register.

I/O ports 1-15 drive a separate interrupt line on the APB interrupt bus. The interrupt number is equal to the I/O line index
(PIO[1] = interrupt 1, etc.). The interrupt generation is controlled by three registers: interrupt mask, polarity and edge regis-
ters. To enable an interrupt, the corresponding bit in the interrupt mask register must be set. If the edge register is ‘0’, the
interrupt is treated as level sensitive. If the polarity register is ‘0’, the interrupt is active low. If the polarity register is ‘1’, the
interrupt is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The polarity register then selects between
rising edge (‘1’) or falling edge (‘0’).

8.3 Registers
Table 26 shows the I/O port register addresses.

Table 26. I/O Port Registers

REGISTER APB ADDRESS

GPIO Port Data Register (GPIODVR) 0x80000900

GPIO Port Output Register (GPIODOR) 0x80000904

GPIO Port Direction Register (GPIODDR) 0x80000908

Interrupt Mask Register (GPIOIMR) 0x8000090C

Interrupt Polarity Register (GPIOIPR) 0x80000910

Interrupt Edge Register (GPIOIER) 0x80000914

Q

Q

Q

D

D

D PAD

Direction

Output
Value

Input
Value
Q D

Input
Value

Figure 53. General Purpose I/O Port Diagram

80

 GPIODVR Address=0x80000900

31 16 15 0
RESERVED I/O Port Value

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-0 PORTVAL[15:0] GPIO Port Value
This read-only register indicates the state of port pin n.
0: Data=‘0’
1: Data=‘1’

Figure 54. GPIO Port Data Value Register

 GPIODOR Address=0x80000904

31 16 15 0
RESERVED I/O Port Output Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-0 PORTOUT[15:0] GPIO Port Output
The port output register sets the state of port pin n when config-
ured as an output.
0: Data=‘0’
1: Data=‘1’

Figure 55. GPIO Port Data Output Register

 GPIODDR Address=0x80000908
31 16 15 0

RESERVED I/O Port Direction Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-0 PORTDDR[15:0] GPIO Data Direction
0: Port pin n configured as input
1: Port pin n configured as output

Figure 56. GPIO Port Data Direction Register

 8.3.2 GPIO port data output register

 8.3.3 GPIO port data direction register

8.3.1 GPIO port data value register

 81

 GPIOIMR Address=0x8000090C

31 16 15 1 0
RESERVED Interrupt Mask Register -

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 GPIOIMR[15:1] GPIO Mask Register
0: Interrupt n disabled
1: Interrupt n enabled

0 Reserved

Figure 57. GPIO Interrupt Mask Register

 8.3.4 GPIO interrupt mask register

 GPIOIPR Address=0x80000910

31 16 15 1 0
RESERVED Interrupt Polarity Register -

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 GPIOIPR[15:1] GPIO Polarity Register
This register configures the polarity of interrupt n.
GPIOIER[n]=0
0: Active low
1: Active high
GPIOIER[n]=1
0: Falling edge
1: Rising edge

0 Reserved

Figure 58. GPIO Interrupt Polarity Register

 8.3.5 GPIO interrupt polarity register

82

 GPIOIER Address=0x80000914
31 16 15 1 0

RESERVED Interrupt Edge Register -

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-1 GPIOIER[15:1] GPIO Interrupt Edge Register
This register configures how an interrupt on port pin n is triggered.
0: Level triggered
1: Edge triggered

0 Reserved

Figure 59. GPIO Interrupt Edge Register

 8.3.6 GPIO interrupt edge register

 83

9.0 PCI Target / Master Unit

9.1 Overview
The PCI Target/Master Unit is a bridge between the PCI bus and the AMBA AHB bus. The unit is connected to the PCI bus
through the PCI Target interface and PCI Master interface. The AHB Slave and AHB Master interfaces connect the PCI core
to the AHB bus. The PCI Configuration & Status register is accessed via the APB bus.

The PCI and AMBA interfaces belong to two different clock domains. Synchronization is performed inside the core through
FIFOs.

9.2 Operation
9.2.1 PCI target unit
The PCI target interface and AHB master provide a connection between the PCI bus and the AHB bus. The PCI target is
capable of handling configuration and single or burst memory cycles on the PCI bus. Configuration cycles are used to access
the Configuration Space Header of the target, while the memory cycles are translated to AHB accesses. The PCI target inter-
face can be programmed to occupy two areas in the PCI address space via registers BAR0 and BAR1 (Section 9.4). Map-
ping to the AHB address space is defined by map registers PAGE0 and PAGE1, which are accessible from PCI and AHB
address space, respectively.

9.2.2 PCI master unit
The PCI master interface occupies one 1GB AHB memory bank and one 128 kB AHB I/O bank. Accesses to the memory
area are translated to PCI memory cycles and accesses to the I/O area generate I/O or configuration cycles. Generation of
PCI cycles and mapping to the PCI address spaces is controlled through the Configuration/Status Register and the I/O Map
Register (Section 9.8).

PCI Master PCI Target

AHB Slave AHB Master

Cfg/Stat

AMBA bus

PCI Off-chip bus

PCI Bridge

MTx FIFO MRx FIFO TTx FIFO TRx FIFO

Figure 60. PCI Master/Target Unit

84

9.2.3 Burst transactions
Both target and master interfaces are capable of burst transactions. Data is buffered internally in FIFOs as shown in Figure
60.

9.2.4 Byte Twisting
As PCI is little endian and the AHB controller is big endian, byte twisting is performed on all accesses to preserve the byte
ordering as shown in Figure 61. Byte twisting can be enabled or disabled in the PAGE0 register (Section 9.5).
Because of byte twisting, byte accesses work correctly. However, 16- and 32-bit PCI accesses need to be byte twisted before
being sent to the PCI core.

Note: Accesses between the AHB bus and PCI bus are twisted. Accesses to the configuration space are not byte twisted.

9.3 PCI target interface
The PCI target interface occupies two memory areas in the PCI address space as defined by the BAR0 and BAR1 registers in
the Configuration Space Header. Register BAR0 maps to a PCI space of 1MB; register BAR1 maps to a PCI space of 64MB.

The PCI Target interface handles the following PCI commands:

• Configuration Read/Write: Single access to the Configuration Space Header. No AHB access is performed
• Memory Read: If prefetching is enabled, the AHB master interface fetches a cache line. Otherwise, a single AHB

access is performed
• Memory Read Line: The unit prefetches data according to the value of the Cache Line Size register
• Memory Read Multiple: The unit performs maximum prefetching
• Memory Write
• Memory Write and Invalidate

AMBA bus

PCI Off-chip bus 31-24 23-16 15-8 7-0

31-24 23-16 15-8 7-0

GRPCI

Address 0

Address 0

Address 3

Address 3

Figure 61. GRPCI Byte Twisting

 85

The target interface supports incremental bursts for PCI memory cycles. The target interface can finish a PCI transaction
with one of the following abnormal responses:

• Retry: This response indicates that the master should perform the same request later, as the target is temporarily
busy. This response is always given at least one time for read accesses, but can also occur for write accesses.

• Disconnect with data: Indicates that the target can accept one more data transaction, but no more. This occurs if
the master tries to read more data than the target has prefetched.

• Disconnect without data: Indicates that the target is unable to accept more data. This occurs if the master tries to
write more data than the target can buffer.

• Target-Abort: Indicates that the current access caused an internal error and that the target will not be able to com-
plete the access.

The AHB master interface of the target is capable of burst transactions. Burst transactions are performed on the AHB when
supported by the destination unit (AHB slave); otherwise, multiple single access is performed. A PCI burst crossing a 1 kB
address boundary will be performed as multiple AHB bursts by the AHB master interface. The AHB master interface inserts
an idle-cycle before requesting a new AHB burst to allow for re-arbitration of the AHB. AHB transactions with a ‘retry’
response are repeated by the AHB master until an ‘okay’ or ‘error’ response is received. The ‘error’ response on AHB bus
results in a Target-Abort response for the PCI memory read cycle. In the case of a PCI memory write cycle, the AHB access
will not finish with an error response since write data is posted to the destination unit. Instead, the WE bit will be set in the
Configuration/Status register (APB address 0x80000400).

9.4 PCI target configuration space header registers
The registers implemented in the PCI Configuration Space Header are listed in the following table and described in this sec-
tion.

Table 27. Configuration Space Header Registers

REGISTER CONFIGURATION SPACE HEADER
ADRESS

Device ID & Vendor ID 0x00

Status & Command 0x04

Class Code & Revision ID 0x08

BIST, Header Type, Latency Timer, Cache Line Size 0x0C

BAR0 0x10

BAR1 0x14

31 16 15 0
DEVICE_ID VENDOR_ID

Figure 62. Device ID & Vendor ID Register

86

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 DEVICE_ID Returns the value of Device ID.
Read=0x0699; Write=don’t care.

15-0 VENDOR_ID Returns the value of Vendor ID.
Read=0x1AD0; Write=don’t care.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 DPE Detected Parity Error
0: No parity error detected
1: Parity error detected

30 Reserved

29 RMA Received Master Abort
Set by the PCI master interface when its transaction is terminated
with Master-Abort.
0: PCI master transaction terminated with no Master-Abort
1: PCI master transaction terminated with Master-Abort

28 RTA Received Target Abort
Set by the PCI master interface when its transaction is terminated
with Target-Abort.
0: PCI master transaction terminated with no Target-Abort
1: PCI master transaction terminated with Target-Abort

27 STA Signalled Target Abort
Set by the PCI target interface when the target terminates transac-
tion with Target-Abort.
0: PCI target terminated with no Target-Abort
1: PCI target terminated with Target-Abort

26-25 DST Device Select Timing
Read=10b; Write=don’t care.

24 DPD Data Parity Error Detected
0: No data parity error detected
1: Data parity error detected

PCISTAT Address=0x80000418

31 30 29 28 27 26 25 24 23 5 4 3 2 1 0
DPE - RMA RTA STA DST DPD RESERVED MIE - BM MS -

Figure 63. Status & Command Register

 87

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

23-5 Reserved

4 MIE Memory Write and Invalidate Enable
Enables the PCI Master interface to generate Memory Write and
Invalidate command.
0: Disabled
1: Enabled

3 Reserved

2 BM Bus Master
Enbales the Master Interface to generate PCI cycles.
0: Disabled
1: Enabled

1 MS Memory Space
Allows the unit to respond to memory space accesses.
0: Disabled
1: Enabled

0 Reserved

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 CLASS_CODE Returns the value of Class Code.
Read=0x0B4000; Write=don’t care.

7-0 REVISION_ID Returns the value of Revision ID.
Read=0x00; Write=don’t care.

31 8 7 0
CLASS_CODE REVISION_ID

Figure 64. Class Code & Revision ID

31 24 23 16 15 8 7 0
BIST HEADER LTM CLS

Figure 65. BIST, Header Type, Latency Timer and Cache Line Size Register

88

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-24 BIST Built-in Self Test
Not supported. Read=00...0b; Write=don’t care.

23-16 HEADER Header Type
Read=00...0; Write=don’t care.

15-8 LTIM Latency Timer
Maximum number of PCI clock cycles that the PCI bus master can
own the bus.

7-0 CLS System Cache Line Size
Defines the prefetch length for Memory Read and Memory Read
Line commands.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-21 BASE_ADDRESS_0 PCI Target Interface Base Address 0
A memory area of 2MB is defined at memory location
BASE_ADDRESS_0. PCI memory accesses to the lower half of
this area are translated to AHB accesses using PAGE0 map register
(Section 9.5).

20-4 Reserved This field can be used to determine the memory requirement of the
target by writing all ‘1s’ to the BAR0 register and reading back the
value. The device will return ‘0s’ in unimplemented bits positions
effectively defining the requested memory area.
Read=00...0b; write=don’t care

3 PR Prefetchable
Read=0; Write=don’t care.

2-1 TP Type
Read=0; Write=don’t care.

0 MS Memory Space Indicator
Read=0; Write=don’t care.

PCIBAR0 Address=0x80000404

31 21 20 4 3 2 1 0
BASE_ADDRESS_0 “00...0” PR TP MS

Figure 66. BAR0 Register

 89

PAGE0 register is mapped into upper half of the PCI address space defined by BAR0 register.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-26 BASE_ADDRESS_1 PCI Target Interface Base Address 1. A memory area of 64MB is
defined at memory location BASE_ADDRESS_1. PCI memory
accesses to this memory space are translated to AHB accesses using
PAGE1 map register (Section 9.5).

25-4 Reserved This field can be used to determine the memory requirement of the
target by writing all ‘1s’ to the BAR1 register and reading back the
value. The device will return ‘0s’ in unimplemented bits positions
effectively defining the requested memory area.
Read=00...0b; write=don’t care.

3 PR Prefetchable
Read=0; Write=don’t care.

2-1 TP Type
Read=0; Write=don’t care.

0 MS Memory Space Indicator
Read=0; Write=don’t care.

PCIBAR1 Address=0x8000040C

 31 26 25 4 3 2 1 0
BASE ADDRESS ‘00..0’ PR TP MS

Figure 67. BAR1 Register

90

9.5 PCI target map registers
PAGE0 and PAGE1 registers map PCI accesses to AHB address space. PAGE0 is accessed from PCI accesses. PAGE1 can
be accessed from the APB.

9.5.1 PAGE0 register
Register PAGE0 provides a memory mapping between the PCI address space defined by register BAR0 and the AHB
address space. PAGE0 is only accessible from a PCI memory access, and its location in PCI address space depends upon the
value of BAR0. BAR0 provides a mapping of 2MB between the PCI address space and the PCI target. Only the lower half
of the BAR0 space is used. The upper half is unused except for the lowest word, which is the location of the PAGE0 register.
This means that the effective address space of BAR0 is 1MB. Any PCI access to the lower half of the BAR0 address space
will map to the AHB address space as defined by PAGE0. The following code example shows how to determine the location
of PAGE0 using a PCI memory access, and how to configure PAGE0 to provide a mapping between the PCI address space
and the APB address space.

/* Read the address of BAR0 */

pci_read_config_dword(bus, slot, function, 0x10, &tmp);

/* Determine the PCI address of PAGE0 */

addr_page0 = tmp + 0x100000;

/* Set PAGE0 to point to start of the APB memory space */

*addr_page0 = (unsigned int *) 0x80000000;

In this example, if the address of BAR0 is 0xC0000000, then the address of PAGE0 will be 0xC0100000. A write to PCI
address 0xC0000000 will translate to an AHB memory access at address 0x80000000.

Table 28. PCI Target Map Registers

REGISTER ADDRESS

PAGE0 First address in the upper half of PCI address space defined by BAR0 reg-
ister (BAR0 + 0x100000). Accessible only from the PCI address space.

PAGE1 APB address 0x80000410

PCIPAGE0 Address=0x80000408

31 20 19 1 0
PAGE0_MAP ‘00..0’ BTEN

Figure 68. PAGE0 Register

 91

9.5.2 PAGE1 register
Register PAGE1 provides a memory mapping between the PCI address space defined by register BAR1 and the AHB
address space. PAGE1 is accessible directly from the APB bus (APB address 0x80000410), or indirectly from a PCI mem-
ory access if PAGE0 is used to map PCI accesses to the APB memory space. BAR1 provides a mapping of 64MB between
the PCI address space and the PCI target. PAGE1 can therefore be used to map 64MB of the PCI address space to an equiv-
alent size in the AHB memory space.

9.6 PCI master interface
The PCI master interface occupies 1GB of AHB memory address space and 128 kB of AHB I/O address space. The PCI
master interface handles AHB accesses to its back-end AHB Slave interface and translates them to one of the following PCI
cycles: PCI configuration cycle, PCI memory cycle, or PCI I/O cycle.

Mapping of the PCI master’s AHB address space is configurable through the Configuration/Status Register and I/O Map
Register (Section 9.7).

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-20 PAGE0_MAP Maps PCI accesses to the PCI BAR0 address space to the AHB
address space. The AHB address is formed by concatenating
PAGE0_MAP with PCI address AD[19:0].

19-1 Reserved Read=00...0b; write=don’t care.

0 BTEN 1 Byte Twisting Enable
May be altered only when bus mastering is disabled.
0: Disabled
1: Enabled

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-26 PAGE1_MAP Maps PCI accesses to the PCI BAR1 address space to the AHB
address space. The AHB address is formed by concatenating
PAGE1_MAP with PCI address AD[25:0].

25-0 Reserved Read=00...0b; write=don’t care.

PCIPAGE1 Address=0x80000410

31 26 25 0
PAGE1_MAP ‘00..0’

Figure 69. PAGE1 Register

92

9.6.1 PCI configuration cycles
Single PCI Configuration cycles are performed by accessing the upper 64 kB of AHB I/O address space allocated by the PCI
master’s AHB slave starting at address 0xFFF0FFFF. Type 0 configuration cycles are supported. The following figure shows
the configuration access format.

9.6.2 I/O cycles
PCI I/O cycles are performed by accessing the lower 64 kB of the AHB I/O address space occupied by the master’s AHB
slave interface are translated into PCI I/O cycles starting at address 0xFFF00000. Mapping is determined by the IOMAP
field of I/O Map Register. The IOMAP field of the I/O Map Register maps memory accesses between the PCI master (AHB
memory space) and the PCI memory space when performing PCI I/O cycles. The PCI address is formed by concatenating
IOMAP with AHB address 15:0. IOMAP provides the 16 most-significant bits of the PCI I/O cycle address.

9.6.3 PCI memory cycles
PCI memory cycles are performed by accessing the 1GB AHB address space occupied by the master’s AHB slave starting at
address 0xC0000000. Mapping and PCI command generation are configured by programming the Configuration/Status Reg-
ister (APB address 0x80000400). Burst operation is supported for PCI memory cycles.The MMAP field of the Configura-
tion/Status Register maps memory accesses between the PCI master (AHB memory space) and the PCI address space when
performing PCI memory cycles. The PCI address is formed by concatenating MMAP with AHB address 29:0. MMAP pro-
vides the two most-significant bits of the PCI memory cycle address. PCI commands generated by the master are directly
dependent upon the AMBA transfer type and the value of Configuration/Status Register. The Configuration/Status Register
can be programmed to issue the following PCI commands: Memory Read, Memory Read Line, Memory Read Multiple,
Memory Write, and Memory Write and Invalidate. If an AHB burst access is made to the PCI master’s AHB memory space,
it is translated to burst PCI memory cycle. When the PCI master interface is busy performing the transaction on the PCI bus,
its AHB slave interface will not be able to accept new requests. A ‘Retry’ response will be given to all accesses to its AHB
slave interface. The requesting AHB master repeats its request until an ‘OK’ or ‘Error’ response is given by the PCI master’s
AHB slave interface.

Note: ‘RETRY’ responses on the PCI bus are not transparent and will automatically be retried by the master PCI interface
until the transfer is either finished or aborted.

For burst accesses, only linear-incremental mode is supported and is directly translated from AMBA commands. Byte
enables on the PCI bus are translated from the HSIZE control AHB signal and the AHB address according to the table below.
Note: only WORD, HALF-WORD and BYTE values of HSIZE are valid.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-11 IDSEL This field is decoded to drive the PCI IDSEL lines during
configuration cycles.

10-8 FUNC This field selects the function on a multi-function device.

7-2 REGISTER This field selects the DWORD register in the Configuration Space.

1-0 TP Must be driven to ‘00’ to generate a Type 0 configuration cycle.

31 16 15 11 10 8 7 2 1 0
RESERVED IDSEL FUNC REGISTER TP

Figure 70. Mapping of AHB I/O Addresses to PCI Address for PCI Configuration Cycles

 93

9.7 PCI host operation
The PCI core provides a host input signal that must be asserted (active low) for PCI host operation. If this signal is asserted,
the bus master interface is automatically enabled and the Bus Master (BM) bit is set in the Status and Command Register.
An asserted PCI host signal also enables the PCI target to respond to configuration cycles when the IDSEL signals
AD[31:11] are not asserted. This is done in order for the master to be able to configure its own target. For designs intended
to operate only as a host or peripheral, this signal can be tied low or high in the design. For multi-purpose designs it should
be connected to the appropriate PCI connector pin. The PCI Industrial Computers Manufacturers Group (PICMG) cPCI
specification specifies pin C2 on connector P2 for this purpose. The pin should have pull-up resistors as peripheral slots
leave it unconnected. PCI interrupts are supported as inputs for PCI hosts.

Note: PCI arbiter is NOT affected by the PCI_HOST input.

9.8 Registers
The core is programmed through registers mapped into APB address space.

Table 29. Byte enable generation

HSIZE PCI_AD[1:0] PCI_C/BE[3:0]

00 (8 bit) 00 1110

00 (8 bit) 01 1101

00 (8 bit) 10 1011

00 (8 bit) 11 0111

01 (16 bit) 00 1100

01 (16 bit) 10 0011

10 (32 bit) 00 0000

Table 30. AMBA registers

REGISTER APB
ADDRESS NOTE

Configuration/Status Register 0x80000400 Read/write access from the APB bus.

BAR0 Register 0x80000404 Read-only access from the APB bus. Read/write
access from the PCI bus.

PAGE0 Register 0x80000408 Read-only access from the APB bus. Read/write
access from the PCI bus.

BAR1 Register 0x8000040C Read-only access from the APB bus. Read/write
access from the PCI bus.

PAGE1 Register 0x80000410 Read/write access from the APB bus.

IO Map Register 0x80000414 Read/write access from the APB bus.

Status & Command Register 0x80000418 Read-only access from the APB bus. Read/write
access from the PCI bus.

94

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-30 MMAP Memory Space Map
Maps memory accesses between the PCI master (AHB memory
space) and PCI address space when performing PCI memory cycles.
The PCI address is formed by concatenating MMAP with AHB
address 29:0.

29-23 Reserved

22-15 LTIMER Latency Timer (read only)
Value of Latency Timer in the Configuration Space Header.

14 WE Target Write Error (read only)
0: No error
1: Write access to target interface resulted in error.

13 SH System Host (read only)
0: Unit is not system host
1: Unit is system host

12 BM Bus Master (read only)
Value of the Bus Master field in the Command register of the
Configuration Space Header.

11 MS Memory Space (read only)
Value of Memory Space field in the Command register of the
Configuration Space Header.

10 WB Write Burst Command
Defines the PCI command used for PCI write bursts.
0: Memory Write
1: Memory Write and Invalidate

9 RB Read Burst Command
Defines the PCI command used for PCI read bursts.
0: Memory Read Multiple
1: Memory Read Line

8 CTO Configuration Timeout (read only)
0: No timeout occurred during configuration cycle
1: Timeout occurred during configuration cycle

7-0 CLS Cache Line Size (read only)
Value of Cache Line Size register in Configuration Space Header.

PCICONF Address=0x80000400

31 30 29 23 22 15 14 13 12 11 10 9 8 7 0
MMAP RESERVED LTIMER WE SH BM MS WB RB CTO CLS

Figure 71. Configuration/Status Register

 95

9.9 Vendor and device identifiers
The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x014.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 IOMAP Maps memory accesses between the PCI master (AHB memory
space) and the PCI memory space when performing PCI I/O cycles.
The PCI address is formed by concatenating MMAP with AHB
address 15:0.

15-0 Reserved

 PCIIOM Address=0x80000414

31 16 15 0
IOMAP RESERVED

Figure 72. I/O Map Register

96

10.0 DMA Controller for the GRPCI Interface

10.1 Introduction
The DMA controller is an add-on interface to the GRPCI interface. This controller performs bursts to or from the PCI bus
using the master interface of the PCI Target/Master unit.

Figure 73 below illustrates how the DMA controller is attached between the AHB bus and the PCI master interface.

10.2 Operation
The DMA controller is set up by defining the location of memory areas between which the DMA interfaces to both PCI and
AHB address spaces, as well as the direction, length, and type of transfer. Only 32-bit word transfers are supported.

The DMA transfer is automatically aborted when any kind of error is detected during a transfer. In the event of an error, the
ERR bit of the Status and Command Register is set. The DMA controller does not detect deadlocks in its communication
channels. If the system concludes that a deadlock has occurred, it can manually abort the DMA transfer. The DMA control-
ler may perform bursts over a 1 kB boundary of the AHB bus, which is the maximum data burst that may occur over the bus
per AMBA specification. When the size of the data burst exceeds 1 kB, AHB idle cycles are automatically inserted to break
up the burst over the boundary.

When the DMA is not active, the AHB slave interface of PCI Target/Master unit directly connects to AMBA AHB bus.

Figure 73. DMA Controller unit

PCI Master PCI Target

AHB Slave AHB Master

Cfg/Stat

AMBA bus

PCI off-chip bus

PCI Bridge

MTx FIFO MRx FIFO TTx FIFO TRx FIFO

AHB

Ctrl

Buffer
Master

DMA Controller

PCI Target/Master

 97

10.3 Registers
The core is programmed through registers mapped into APB address space.

Register APB Address

Command and Status Register (DMASCR) 0x80000500

AMBA Target Address Register (DMAATA) 0x80000504

PCI Target Address Register (DMAPTA) 0x80000508

Burst Length Register (DMALNR) 0x8000050C

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-4 TTYPE Transfer Type
Perform either PCI memory or I/O cycles.
0100b: Perform I/O cycles.
1000b: Perform memory cycles

3 ERR Error
Last transfer was abnormally terminated. If set by the DMA
controller, this bit remains zero until cleared by writing ‘1’ to it.

2 RDY Ready
Current transfer is completed. When set by the DMA Controller this
bit remains zero until cleared by writing ‘1’ to it.

1 TD Transfer Direction
0: Read from PCI
1: Write to PCI

0 ST Start DMA Transfer
Writing ‘1’ starts the DMA transfer. All other registers must be
configured before setting this bit. Set by the PCI Master interface
when its transaction is terminated with Target-Abort.

DMASCR Address = 0x80000500

31 8 7 4 3 2 1 0
RESERVED TTYPE ERR RDY TD ST

Figure 74. Status and Command Register

98

10.4 Vendor and device identifiers
The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x016.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 ATA AMBA Target Address
AHB start address for the data on the AMBA bus. In case of error, it
indicates the failing address.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 PTA PCI Target Address
PCI start address on the PCI bus. This is a complete 32-bit PCI
address and is not further mapped by the PCI Target/Master unit. In
case of error, it indicates the failing address.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-12 Reserved

11-0 LEN Burst Length
Number of 32-bit words to be transferred.

DMAATA Address = 0x80000504

31 0
ATA

Figure 75. AMBA Target Address Register

DMABLN Address = 0x8000050C

31 12 11 0
LEN

Figure 77. Burst Length Register

DMAPTA Address = 0x80000508

31 0
PTA

Figure 76. PCI Target Address Register

 99

11.0 SpaceWire Interface

11.1 Overview
The UT699 processor contains four SpaceWire interfaces in form of a GRSPW core. Each GRSPW core provides an inter-
face between the AMBA AHB bus and a SpaceWire network and each implements the SpaceWire standard with the protocol
identification extension (ECSS-E-50-12 Part 2). The Remote Memory Access Protocol (RMAP) command handler is imple-
mented in SpaceWire ports 3 and 4. The RMAP handler implementation is based on Draft E of the RMAP standard.

The GRSPW is controlled through a set of registers accessed through the AMBA APB interface (Section 11.8). Data is
transferred through DMA channels using an AHB master interface.

There are three clock domains for the four SpaceWire ports: (1) the system clock is utilized for the AHB interface, (2) the
transmitter clock (TxClk) comes from the external SPW_CLK pin, and (3) the receiver clock (RxClk) is generated internally
from the receive data and strobe signals. For proper operation, the receiver clock frequency must be no more than twice as
fast as the system clock, and the transmitter clock frequency must be no faster than four times the system clock. The system
clock frequency should be at least 10 MHz.

Figure 78 shows a block diagram of the GRSPW module.

Transmitter

Receiver

D

S

S

D

RxClock
Recovery

TxClk (SPW_CLK)

RxClock

AHB Master
Interface

Transmitter

N-Char
FIFO

Link Interface
FSM

AHB clock domain

Tx clock domain

Rx clock domain

Data
Parallelization

Receiver
AHB FIFO

Transmitter
DMA Engine

Registers
APB

Interface

Receiver
DMA Engine

Send
FSM

RMAP
Receiver

RMAP
Transmitter

Figure 78. GRSPW Block Diagram

AHB FIFO

100

11.2 Operation

11.2.1 Overview
The GRSPW is comprised of the link interface, the AMBA interface, and the RMAP handler. A block diagram of the inter-
nal structure is shown in Figure 78.

The link interface consists of the receiver, transmitter and the link interface finite state machine (FSM). They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB master interface and
the APB interface. The link interface provides FIFO interfaces to the DMA engines. These FIFOs are used to transfer N-
Chars between the AMBA and SpaceWire domains during reception and transmission. The AHB FIFOs are 32-bits wide
and 16 deep.

The RMAP handler is a part of the GRSPW that handles incoming packets which are determined to be RMAP commands.
The RMAP command is decoded, and if it is valid, the operation is performed on the AHB bus. If a reply is requested, it is
automatically transmitted back to the source by the RMAP transmitter.

The GRSPW is controlled through a set of user registers accessible from the APB interface. The registers control clock-gen-
eration, the DMA engines, the RMAP handler, and the link interface.

11.2.2 Protocol support
The GRSPW only accepts packets with a destination address corresponding to the NODE_ADDRESS field of the SPW
Node Address Register. Packets with address mismatch will be silently discarded, except when operating in open packet
mode, which is covered in Section 11.4.10. The Node Address Register is initialized during reset to the default address of
254. Its value can then be changed to another value by writing to the register.

The GRSPW also requires that the byte following the destination address is a protocol identifier as specified in Part 2 of the
SpaceWire standard. It is used to determine the destination DMA-channel for a packet. Figure 79 shows the packet type
expected by the GRSPW.

RMAP (Protocol ID = 0x01) commands are handled separately from other packets if the hardware RMAP handler is
enabled. RMAP is enabled by setting the RE bit in the SPW Control Register. When enabled, all RMAP commands are pro-
cessed, executed, and replied to in hardware. RMAP replies are still written to the DMA channel. If the RMAP handler is
disabled, all packets are written to the DMA channel. More information on the RMAP protocol support is found in Section
11.6.

All packets arriving with the extended protocol ID (0x00) are sent to the DMA channel. This means that the hardware
RMAP command handler will not process incoming RMAP packets that use the extended protocol ID. Note: the reserved
extended protocol identifier (ID = 0x000000) is not ignored by the GRSPW. It is up to the client receiving the packets to
choose to ignore them.

When transmitting packets, the address and protocol ID fields must be included in the transmit data buffers. They are not
automatically added by the GRSPW.

Figure 79 shows a packet with a normal protocol identifier. The GRSPW also allows reception and transmission of packets
with extended protocol identifiers. However, the hardware RMAP handler and RMAP CRC calculator will not process
packets with extended protocol identifiers.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP

Figure 79. The SpaceWire Packet with Protocol ID that is Expected by the GRSPW

 101

11.3 Link interface
The link interface handles the communication on the SpaceWire network and consists of the transmitter, receiver, a finite
state machine (FSM), and FIFO interfaces. An overview of the architecture is found in Figure 80.

11.3.1 Link interface FSM
The FSM controls the link interface (a more detailed description is found in the SpaceWire standard). The low-level protocol
handling (the signal and character level of the SpaceWire standard) is handled by the transmitter and receiver, while the
FSM in the host domain handles the exchange level.

The link interface FSM is controlled through the SPW Control Register. The link can be disabled through the Link Disable
(LD) bit, which depending on the current state, either prevents the link interface from reaching the started state, or forces it
to the error-reset state. When the link is enabled, the link interface FSM is allowed to enter the started state when either the
link start (LS) bit is set, or when a NULL character has been received with the Autostart (AS) bit set.

The current state of the link interface determines which type of characters are allowed to be transmitted. Together with the
requests made from the host interfaces, the current state determine what character will be sent. The current state can be
determined by reading the Link State (LS) field of the SPW Status Register.

Time codes are sent when the FSM is in the run-state and a request is made through the time interface. This is described in
section 11.3.4.

When the link interface is in either the connecting- or run-state, it is allowed to send flow-control characters (FCTs). FCTs
are sent automatically by the link interface when possible. This is done based on the maximum value of 56 for the outstand-
ing credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent as long as the outstanding counter
is less than or equal to 48 and there are at least 8 more empty FIFO entries than the counter value.

N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are credits available. NULLs
are sent when no other character transmission is requested or when the FSM is in a state that does not allow any transmis-
sions to occur.

The credit counter (incoming credits) is automatically increased when FCTs are received and decreased when N-Chars are
transmitted. Received N-Chars are stored to the receiver N-Char FIFO for further handling by the DMA interface. Received
time-codes are handled by the time-interface.

11.3.2 Transmitter
The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-interface are used to
determine the next character to be transmitted. The type of character and the character itself (for N-Chars and time-codes) to
be transmitted are presented to the low-level transmitter which is located in the TxClk clock domain.

The separate clock domains allow the SpaceWire link to run on a different frequency than the host system clock. The UT699
has a separate clock input which is used to generate the transmitter clock. Since the transmitter often runs at frequencies
greater than 100MHz, as much logic as possible has been placed in the slower system clock domain to minimize power con-
sumption and timing issues.

The transmitter logic in the host clock domain decides what character to send next, sets the proper control signal, and pres-
ents any required characters to the low-level transmitter as shown in Figure 80. The transmitter handles sends the requested
characters and generates parity and control bits as needed. If no requests are made from the host domain, NULLs are sent as
long as the transmitter is enabled. Most of the signal and character levels of the SpaceWire standard are handled in the trans-
mitter.

102

The transmitter FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet lengths from the DMA
interface and appends EOPs/EEPs and RMAP CRC values if requested. When it is finished with a packet, the DMA inter-
face is notified and a new packet length value is given.

11.3.3 Receiver
The receiver detects connections from other nodes and receives characters as a bit stream on the data and strobe signals. The
receiver is located in the RxClk clock domain, which runs on a clock generated from the received data and strobe signals.

The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is received it can start
receiving characters. The receiver detects parity, escape, and credit errors, which causes the link interface to enter the error
reset state. Disconnections are handled in the link interface part in the system clock domain because no receiver clock is
available when the receiver is disconnected from the SpaceWire network.

Received characters are flagged to the host domain and the data is presented in parallel form. The interface to the host
domain is shown in Figure 81. L-Chars are handled automatically by the host domain link interface part, while all N-Chars
are stored in the receiver FIFO for further handling. If two or more consecutive EOPs/EEPs are received, all but the first are
discarded.

No signals go directly from the transmitter clock domain to the receiver clock domain, or vice versa. All signals are synchro-
nized to system clock.

11.3.4 Time interface
The time interface is used for sending time-codes over the SpaceWire network. Control of the time interface consists of the
TICK_IN field of the SPW Control Register, the TICK_OUT field of the SPW Channel Control and Status Register, and the
SPW Time Register. The TT and TR bits of the SPW Control Register enable the time transmitter and time receiver, respec-
tively.

Each time-code sent from the SpaceWire port is a concatenation of the TIME_CTRL and TIME_COUNTER fields of the
SPW Time Register. The TT bit is used to enable time-code transmissions. It is not possible to send time-codes if this
bit is zero.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 80. Schematic of the Link Interface Transmitter

Receiver Clock Domain Host Clock Domain

Receiver

D

S

Got time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Got EEP
Got EOP

Figure 81. Schematic of the Link Interface Receiver

 103

Received time-codes are stored in the same TIME_CTRL and TIME_COUNTER registers that are used for transmission.
The TR bit in the SPW Control Register is used for enabling time-code reception. No time-codes will be received if this bit
is zero.

The two enable bits TR and TT are used to ensure that a node will not accidentally both transmit and receive time-codes,
which is in violation of the SpaceWire standard. This also ensures that a the master sending time-codes on a network will not
have its time-counter overwritten if another faulty node starts sending time-codes.

The TIME_COUNTER field is set to 0 after reset and is incremented each time the TICK_IN field is written to when the TT
bit is set. This action causes the link interface to send the new value on the network. A tick-in should not be generated too
often. If the time-code after the previous tick-in has not been sent, the register will not be incremented and the new value
will not be sent. The TICK_IN field is automatically cleared when the value has been sent. Therefore, no new ticks should
be generated until this field is zero.

A tick-out is generated each time a valid time-code is received and the TR bit is set. When the tick-out is generated, the
TICK_OUT register field is asserted until it is cleared by writing a one to it.

The TIME_COUNTER field of the SPW Time Register indicates the current time counter value. It is updated each time a
time-code is received and the TR bit is set. The same register is used for transmissions and can also be written directly from
the APB interface.

The control bits of the time-code are always stored to the TIME_CTRL field of the SPW Time Register when a time-code is
received whose time-count is one more than the current time-counter register of the node. The TIME_CTRL field is
accessed by reading the SPW Time Register from the APB interface.

It is possible to have both the time-transmission and reception functions enabled at the same time.

11.3.5 Clock Divider
The transmitter frequencies for the link-state and run-state are set in the SPW Clock Divisor Register. During link initializa-
tion, the divisor for the SpaceWire input clock is (CLOCK_DIVISOR_LINK+1). For example, if the SpaceWire input clock
is 50MHz, CLOCK_DIVISOR_LINK should be set to four in order to set the transmitter frequency to 10Mbit/s during link
initialization.

Once the link interface has entered run-state, the transmitter frequency is the SpaceWire input clock divided by
(CLOCK_DIVISOR_RUN+1). For example, if the SpaceWire input clock is 50MHz, the transmitter operate sat 50Mbit/s if
CLOCK_DIVISOR_RUN is set to zero.

11.4 Receiver DMA engine

11.4.1 Basic functionality
The receiver DMA engine reads N-Chars from the N-Char FIFO and stores them to a DMA channel. Reception is based on
descriptors located in a consecutive area in memory that hold pointers to buffers where packets should be stored. When a
packet arrives at the GRSPW it reads a descriptor from memory and stores the packet to the memory area pointed to by the
descriptor. Then it stores status to the same descriptor and increments the descriptor pointer to the next one.

11.4.2 Setting up the GRSPW for reception
A few registers need to be initialized before reception can take place. First the link interface needs to be put in the run state
before any data can be sent. This is accomplished by enabling the link interface which is accomplished by setting the Link
Start (LS) bit in the SWP Control Register, and by enabling the receiver, and setting the SPW Clock Divisor register,
described below. The DMA Receiver Max Length Register sets the maximum packet size that the channel can receive.
Larger packets are truncated with the excessive part spilled. When truncation occurs, the Truncated (TR) bit will be given in
the status field of the descriptor. The minimum value for the RX_MAX_LENGTH field in the SPW DMA Channel Receiver

104

Max Length Register is four, and the value can only be incremented in steps of four bytes. If the maximum length is set to zero
the receiver will not function correctly.

The SPW Node Address Register needs to be set to hold the address of the SpaceWire node. Packets received with an incorrect
address are discarded. Finally, the descriptor table and SPW Control Register must be initialized. This will be described in the
two following sections.

11.4.3 Setting up the descriptor table address
The GRSPW core reads descriptors from an area in memory pointed to by the SPW Receiver Descriptor Table Address Register.
The register consists of a base address and a descriptor selector. The RX_BASE ADDRESS field points to the beginning of the
memory area and must start on a 1 kB aligned address. It is also limited to be 1 kB in size, which means the maximum number
of descriptors is 128.

The RX_DESC_SELECT field points to individual descriptors and is incremented by one when a descriptor has been used.
When the selector reaches the upper limit of the area it wraps to the beginning automatically. It can also be set to wrap automat-
ically by setting the Wrap (WR) bit in the descriptors. The idea is that the selector should be initialized to 0 (the start of the
descriptor area). But it can also be written with another 8 byte aligned value to start somewhere in the middle of the area. It still
wraps to the beginning of the area.

If one wants to use a new descriptor table the Receiver Enable (RE) bit in the SPW Channel Control and Status Register has to
be cleared first. When the RX Active (RX) bit in the SPW Channel Control and Status Register for the channel is cleared, it is
safe to update the descriptor table register. When this is finished and descriptors are enabled the receiver enable bit can be set
again.

11.4.4 Enabling descriptors
As mentioned earlier one or more descriptors must be enabled before reception can take place. Each descriptor is 8 bytes in size
and the layout is shown in Figure 82a and 82b. The descriptors should be written to the memory area pointed to by the receiver
descriptor table address register. When new descriptors are added, they must always be placed immediately following the previ-
ous one written to the area. Otherwise they will not be recognized.

A descriptor is enabled by setting the PACKET_ADDRESS pointer to point at a location where data can be stored, and then set-
ting the Enable (EN) bit. The Wrap (WR) bit can be set to cause the DESCRIPTOR_SELECTOR field in the SPW Receiver
Descriptor Table Address Register to be set to zero when reception has finished to this descriptor. The Interrupt Enable (IE) bit
should be set if an interrupt is wanted when the reception has finished. The Receive Interrupt (RI) bit of the DMA Channel Con-
trol and Status Register must also be set for this to happen.

The descriptor packet address should be word aligned. All accesses on the bus are word accesses so complete words will always
be overwritten regardless of whether all 32-bits contain received data. Also if the packet does not end on a word boundary, the
complete word containing the last data byte will be overwritten.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 Packet Address The address pointing to the buffer which will be used to store the
received packet.

 Offset=0x0

31 30 29 28 27 26 25 24 0
TR D

C
H
C

EP IE W
R

EN PACKET_LENGTH

 Figure 82a. SpaceWire Receive Descriptor

 105

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 TR Truncated
Packet was truncated due to maximum length violation.

30 DC Data CRC
0: No data CRC error detected
1: Data CRC error detected

29 HC Header CRC
0: No header CRC error detected
1: Header CRC error detected.

28 EP EEP Termination
0: Normal packet termination
1: Packet ended with an Error End of Packet character

27 IE Interrupt Enable
0: No interrupt generated upon packet reception
1: An interrupt will be generated when a packet has been received
if the Receive Enable interrupt bit in the DMA Channel Control
and Status Register is set.

26 WR Wrap
0: DESCRIPTOR_SELECTOR will be increased by 0x8 to use the
descriptor at the next memory location. The descriptor table is lim-
ited to 1 kB in size and the pointer automatically wraps back to the
base address when it reaches the 1 kB boundary.
1: The next descriptor used by the GRSPW will be the first one in
the descriptor table at the base address.

25 EN Enable Descriptor
0: Descriptor disabled
1: Descriptor enabled. This means that the descriptor contains valid
control values and the memory area pointed to by the
PACKET_ADDRESS field can be used to store a packet.

24-0 Packet Length The number of bytes received by the buffer. Only valid after EN
has been set to 0 by the GRSPW.

 Offset=0x0

31 30 29 28 27 26 25 24 0
TR D

C
H
C

EP IE W
R

EN PACKET_LENGTH

 Figure 82b. SpaceWire Receive Descriptor

106

11.4.5 Setting up the DMA control register
The final step to receive packets is to set the control register in the following steps: The receiver must be enabled by setting
the Receiver Enable (RE) bit in the SPW DMA Channel Control and Status Register. This can be done anytime; before this
bit is set, no receiver operation will occur. The Receiver Descriptors Available (RD) bit in the DMA Control Register is then
set to indicate that there are new active descriptors. This must always be done after the descriptors have been enabled or the
GRSPW might not notice the new descriptors. More descriptors can be activated when reception has already started by
enabling the descriptors and setting the RD bit. When these bits are set, reception starts immediately as soon as data arrives.

11.4.6 The effect to the control bits during reception
When the receiver is disabled all packets going to the DMA-channel are discarded. If the receiver is enabled the next state is
entered where the RD bit is checked. This bit indicates whether there are active descriptors or not and should be set by the
external application using the DMA channel each time descriptors are enabled as mentioned above. If the RD is ‘0’ and the
No Spill (NS) bit is 0, the packets will be discarded. If NS is ‘1’, the GRSPW core waits until RD is set and then stores the
received data.

When RD is set the next descriptor is read and if enabled, the packet is received to the buffer. If the read descriptor is not
enabled, i.e. the EN bit in the descriptor is 0, RD is set to ‘0’ and the packet is spilled depending on the value of NS.

The receiver can be disabled at any time and causes all packets received afterwards to be discarded. If a packet is currently
being received when the receiver is disabled, the reception will finish normally. The RD bit can also be cleared at any time.
It will not affect any ongoing receptions, but no more descriptors will be read until it is set again. RD is also cleared by the
GRSPW when it reads a disabled descriptor as discussed above.

11.4.7 Address recognition and packet handling
When the receiver N-Char FIFO is not empty, N-Chars are read by the receiver DMA engine. The first character is inter-
preted as the logical address, which is compared to the node address register. If it does not match, the complete packet is dis-
carded (up to and including the next EOP/EEP). Otherwise, the next action taken depends on whether the node is configured
with RMAP or not. If RMAP is disabled all packets are stored to the DMA channel, and depending on the conditions men-
tioned in the previous section, the packet will be received or not. If the packet is received, complete packet including address
and protocol ID, but excluding EOP/EEP, is stored to the address indicated in the descriptor. Otherwise, the complete packet
is discarded.

If RMAP is enabled, the Protocol Identifier and Packet Type / Command / Source Path Address Length bytes in the received
packet are first checked before any decisions are made. If the incoming packet is a RMAP packet (ID = 0x01) and the Com-
mand field is 01b, the packet is processed by the RMAP command handler which is described in Section 11.6. Otherwise,
the packet is processed by the DMA engine as when RMAP is disabled.

At least 2 non-EOP/EEP N-Chars need to be received for a packet to be stored to the DMA channel. If it is an RMAP packet
with hardware RMAP enabled, 3 N-Chars are needed since the Command field of the Packet Type / Command / Source Path
Address Length byte determines where the packet is processed. Packets smaller than these sizes are discarded.

11.4.8 Status bits
When the reception of a packet is finished, the enable (EN) bit in the current descriptor is set to ‘0’. When EN is ‘0’, the sta-
tus bits are also valid as are the number of received bytes indicated in the PACKET_LENGTH field. The Packet Received
(PR) bit in the SPW DMA Channel Control and Status Register is set each time a packet has been received. The GRSPW
can also be made to generate an interrupt for this event if the Receive Interrupt (RI) bit is set.

CRC is always checked for all RMAP packets. If the received packet is not of RMAP type, the CRC error indication bits in
the descriptor should be ignored. If the received packet is of RMAP type, the bits are valid and the Header CRC (HC) bit is
set if a header CRC error was detected. In this case, the data CRC will not be calculated and the Data CRC (DC) bit is unde-
fined. If the header CRC was correct, the DC bit will also contain a valid value and is set to ‘1’ if a data CRC error was
detected.

 107

11.4.9 Error handling
If a packet reception needs to be aborted because of congestion on the network, the suggested solution is to set the Link Dis-
able (LD) bit in the SPW Control Register to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated, but this is the only safe solution since packet reception is a passive operation depending on the transmitter at
the other end. A channel reset bit could be provided, but is not a satisfactory solution since the untransmitted characters
would still be in the transmitter node. The next character (somewhere in the middle of the packet) would be interpreted as
the node address which would probably cause the packet to be discarded, but not with 100% certainty. Usually this action is
performed when a reception is stuck because of the transmitter not providing additional data. The channel reset would not
resolve this congestion.

If an AHB error occurs during reception, the current packet is spilled up to and including the next EEP/EOP. The currently
active channel is disabled and the receiver enters the idle state. The Link Disable (LD) bit in the SPW Control Register and
the Link State (LS) bit in the SPW Status Register indicate this condition.

11.4.10 Open Packet mode
The GRSPW supports an open packet mode where all the data received is stored to the DMA channel regardless of the node
address and possible early EOPs/EEPs. This means that all non-EOP/EEP N-Chars received will be stored to the DMA
channel. The RX_MAX_LENGTH field of the SPW DMA Channel Receiver Max Length Register is still checked and
packets exceeding this size will be truncated.

RMAP commands will be handled by the RMAP handler when open packet mode is enabled by setting the OPM bit in the
SPW Control Register, provided that the RMAP Enable (RE) bit is also set. If RE is cleared, RMAP commands will be
stored to the DMA channel.

11.5 Transmitter DMA engine

11.5.1 Basic functionality
The transmitter DMA engine reads data from the AHB bus and stores it to the transmitter FIFO for transmission on the
SpaceWire network. Transmission is based on the same type of descriptors as for the receiver and the descriptor table has the
same alignment and size restrictions. When new descriptors are enabled, the GRSPW reads them and transfers the amount of
data indicated by the descriptor.

11.5.2 Setting up the GRSPW for transmission
Four steps need to be performed before transmissions can be done with the GRSPW. First, the link interface must be enabled
and started by setting the Link Start (LS) bit in the SPW Control Register. Then the address of the descriptor table needs to
be written to the TX_BASE_ADDRESS field of the SPW Transmitter Descriptor Table Address Register and one or more
descriptors must be enabled in the table. Finally, the Transmit Enable (TE) bit in the SPW DMA Channel Control and Status
Register is written with a ‘1’ to initiate transmission. These steps will be covered in more detail in the next sections.

11.5.3 Enabling descriptors
The transmitter descriptor table address register works in the same way as the corresponding address register for the receiver
descriptor table, which was covered in Section 11.4.3.

To transmit packets, one or more descriptors have to be initialized in memory as follows: First, the number of bytes to be
transmitted must be written to the HEADER_LENGTH and DATA_LENGTH fields. Next, a pointer to the header and data
has to be set by writing to the HEADER_ADDRESS and DATA_ADDRESS fields. There are two different length and
address fields in the transmit descriptors because there are separate pointers for header and data. If a length field is zero, the
corresponding part of a packet is skipped. If both are zero, no packet is sent. The maximum header length is 255 bytes and
the maximum data length is 16MB - 1. When the pointer and length fields have been set, the Enable (EN) bit should be set to
enable the descriptor. This must always be done last. The other control bits must also be set before enabling the descriptor.

The transmit descriptors occupy 16-bytes in memory and the maximum number of descriptors in a single table is 64. The
different fields of a descriptor are shown in the following figure along with their relative memory offsets.

108

The Calculate CRC (CC) field should be set if RMAP CRC is to be calculated and inserted into the current packet. The header
CRC is calculated from the data fetched from the header pointer and the data CRC is generated from data fetched from the
data pointer. The CRCs are appended after the corresponding fields. The first NON_CRC_BYTES of the header are not
included in the CRC calculation.

The CRC is skipped if the corresponding length field is zero. If both fields are zero, nothing will be sent including the EOP.

11.5.4 Starting transmissions
When the descriptors have been initialized, the Transmit Enable (TE) bit in the SPW DMA Control Register has to be set to
tell the GRSPW to start transmitting. New descriptors can be activated in the table even while a transmission is active or in
progress. Each time a set of descriptors is added, the TE bit should be set. This has to be done as the GRSPW clears the TE bit
whenever it encounters a disabled descriptor.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-17 Reserved

16 CC Calculate CRC
If set, two CRC values will be generated and appended to the
packet according to the RMAP specification. The first CRC is
appended after the data pointed to by the header address field and
the second is appended after the data pointed to by the data address
field.

15 LE Link Error
0: No link error occurred
1: A link error occurred during the transmission of this packet

14 IE Interrupt Enable
0: Disable interrupts
1: An interrupt will be generated when the packet has been trans-
mitted and the Transmitter Interrupt TE enable bit in the DMA
control register is set.

13 WR Wrap
0: The descriptor pointer is increased with 0x10 to use the descrip-
tor at the next higher memory location.
1: The descriptor pointer wraps and the next descriptor read will be
the first one in the table (at the base address).

 Offset=0x0
31 17 16 15 14 13 12 11 8 7 0

RESERVED CC LE IE WR EN NON_CRC_
BYTES

HEADER LENGTH

Figure 83a. SpaceWire Transmitter Descriptor

 109

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

12 EN Enable
0: Disable transmitter descriptor
1: Enable transmitter descriptor. When all control fields (address,
length, wrap and crc) are set, this bit should be set. While the bit is
set the descriptor should not be modified since this might corrupt
the transmission in progress. The GRSPW clears this bit when the
transmission has finished.

11-8 NON_CRC_BYTES Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary
when using path addressing since one or more bytes in the begin-
ning of the packet might be discarded before the packet reaches its
destination.

7-0 HEADER_LENGT
H

Header length in bytes. If set to zero, the header is skipped.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 HEADER_ADDRE
SS

Address from where the packet header is fetched. Does not need to
be word aligned.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-24 Reserved

23-0 DATA_LENGTH Length of data part of the packet in bytes. If set to zero, no data will
be sent. If both data- and header-lengths are set to zero, no packet
will be sent.

 Offset=0x4

31 0
HEADER_ADDRESS

 Offset=0x8

31 24 23 0
RESERVED DATA_LENGTH

Figure 83b. SpaceWire Transmitter Descriptor

Figure 83c. SpaceWire Transmitter Descriptor

110

11.5.5 The transmissions process
When the Transmit Enable (TE) bit is set in the SPW DMA Channel Control and Status Register, the GRSPW starts reading
descriptors immediately. The number of bytes indicated are read and transmitted. When a transmission has finished, the
Enable (EN) field of the descriptor will be cleared and a Packet Sent (PS) bit set in the DMA control register. An interrupt
will also be generated if requested by setting the Interrupt Enable (IE) bit in the descriptor. Then a new descriptor is read and
if enabled, a new transmission starts. Otherwise, the transmit enable bit is cleared and nothing will happen until it is enabled
again.

11.5.6 The descriptor table address register
An internal pointer is used to keep track of the current position in the descriptor table and it can be read and written through
the APB interface. The TX_DESC_SELECT field in the SPW Transmitter Descriptor Table Address Register is used as the
descriptor pointer, and points to the current descriptor in the descriptor table. This pointer is set to zero during reset and is
incremented by one each time a descriptor is used. As the field is six bits wide, and as each descriptor is 16 bytes long, it
wraps automatically when the 1 kB limit for the descriptor table is reached. Alternately, it can be set to wrap earlier by set-
ting the Wrap (WR) bit in the current descriptor.

The descriptor table register can be updated anytime provided no transmission is active. No transmission is active if the
Transmit Enable (TE) bit is zero and the complete table has been sent, or if the table is aborted (explained below). If the table
is aborted, one has to wait until the TE bit is ‘0’ before updating the table pointer.

11.5.7 Error handling
If the Abort TX (AT) bit in the SPW DMA Channel Control and Status Register is set, the current transmission will be
aborted; the packet is truncated and an EEP is inserted. This is only useful if the packet needs to be aborted because of con-
gestion on the SpaceWire network. Aborting a transmission will not help with congestion on the AHB since AHB slaves
have a maximum of 16 waitstates. The aborted packet will have its Link Error (LE) bit set in the descriptor. The TE bit in the
DMA control register bit is also cleared and no new transmissions will occur until the transmitter is enabled again.

When an AHB error is encountered during transmission, the currently active DMA channel is disabled, the packet is trun-
cated, an EEP is inserted if the transmission has started, and the transmitter goes to idle mode. The TX AHB Error (TA) bit
in the DMA control register is set to indicate this error condition. The client using the channel has to correct the error and
enable the channel again.

11.6 RMAP
The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node via the SpaceWire link.
Some common operations are reading from and writing to memory, registers, and FIFOs. The GRSPW has a hardware
RMAP command handler, which is described in Section 11.6.6. This section describes the basics of the RMAP protocol and
the command handler implementation.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 DATA_ADDRESS Address from where data is read. Does not need to be word aligned.

 Offset=0xC

31 0
DATA_ADDRESS

Figure 83d. SpaceWire Transmitter Descriptor

 111

11.6.1 Fundamentals of the protocol
RMAP is a protocol that is designed to provide remote access to memory mapped resources on a SpaceWire node via a
SpaceWire network. RMAP commands are those that have the Protocol Identifier byte of a SpaceWire packet set to 0x01.
RMAP provides three operations: write, read and read-modify-write. These operations are posted operations, which means
that a source does not wait for an acknowledge or reply. It also implies that any number of operations can be outstanding at
any time and that no timeout mechanism is implemented in the protocol. Time-outs must be implemented in the user appli-
cation that sent the commands. Data payloads of up to 16 Mb - 1 are supported by the protocol. A destination can be
requested to send replies and to verify data before executing an operation. A complete description of the protocol is found in
the RMAP standard.

11.6.2 Implementation
The GRSPW includes a handler for RMAP commands that processes all incoming packets with protocol ID = 0x01 and
Packet Type field in the Command byte set to 01b. When such a packet is detected, it is not stored to the DMA channel.
Instead, it is passed to the RMAP receiver, which is seen in Figure 78.

The GRSPW implements all three commands defined in the standard with some restrictions. The implementation is based on
Draft C of the RMAP standard. Support is only provided for 32-bit, big-endian systems. This means that the first byte
received is the MSB in a word. The command handler will not receive RMAP packets using the extended protocol ID. These
are always sent to the DMA channel.

The RMAP receiver processes commands. If they are correct and accepted, the operation is performed on the AHB bus and
a reply is formatted. If an acknowledge is requested, the RMAP transmitter automatically sends the reply. RMAP transmis-
sions have priority over DMA channel transmissions.

Packets with a mismatching destination logical address are never passed to the RMAP handler. The DESTINATION_KEY
field of the SPW Destination Key Register must match the Destination Key byte of the incoming packet. If there is a mis-
match and a reply has been requested, the error code of the Status byte is set to ‘3’. Replies are sent if and only if the Ack
field in the Command byte is set to ‘1’.

Detection of all error codes is supported. When a failure occurs during a bus access the error code is set to 1 (General error).
There is predetermined order in which error-codes are set in the case of multiple errors in the GRSPW as shown in Table 31.

 Table 31. The order of error detection in case of multiple errors
 in the GRSPW. The error detected first has number 1.

DETECTION
ORDER

ERROR
CODE ERROR

1 2 RMAP command not supported by node

2 3 Invalid destination key

3 11 RMW data length error

4 9 Verify buffer overrun

5 10 Authorization failure

6 5/6 Early EOP/EEP

7 4 Invalid data CRC

8 7/8 Late EOP/EEP

112

Read accesses are performed on the fly; that is, they are not stored in a temporary buffer before transmitting. This means that
the error code 1 (General error) will never be seen in a read reply since the header has already been sent when the data is
read. If the AHB error occurs, the packet will be truncated and ended with an EEP.

The details of the support for the different commands are now presented. All defined commands that are received with a
non-supported option set will not be executed. This might result in a reply being sent with error code 10 (RMAP Command
not implemented or authorized).

11.6.3 Write commands
Write commands are divided into two subcategories when examining their capabilities: verified writes and non-verified
writes. Verified writes have a length restriction of four bytes and the address must be aligned to the size. For example, a 1
byte write can be written to any address, 2 byte writes must be halfword aligned, 3 byte writes are not allowed, and 4 byte
writes must be word aligned. Since there will always be only one AHB operation performed for each RMAP verified write
command, the Increment Address bit in the Command byte can be set to either ‘0’ or ‘1’.

Non-verified writes have no restrictions when the incrementing bit is set to ‘1’, indicating sequential memory access. If it is
set to ‘0’ the number of bytes must be a multiple of 4 and the address must be word aligned. There is no guarantee how
many words will be written when early EOP/EEP is detected for non-verified writes.

11.6.4 Read commands
Read commands are performed on the fly when the reply is sent. Thus, if an AHB error occurs, the packet will be truncated
and ended with an EEP. There are no restrictions for incrementing reads. But non-incrementing reads have the same align-
ment restrictions as non-verified writes. Note: error code 10 will be sent in the reply if a violation was detected, even if the
length field was zero.

11.6.5 RMW commands
All read-modify-write sizes are supported except six, which would result in three bytes being read from and written to the
AMBA bus. The RMW bus accesses have the same restrictions as the verified writes. As in the verified write case, the incre-
menting bit can be set to any value since only one AHB bus operation will be performed for each RMW command.

11.6.6 Control
The RMAP command handler runs in the background without any external intervention, but there are a few control configu-
ration options.The RMAP Enable (RE) bit in the SPW Control Register can be used to completely disable the RMAP com-
mand handler. When it is set to ‘0’, no RMAP packets will be stored to the DMA channel instead of being handled in
hardware.

There is a possibility that RMAP commands will not be performed in the order they arrive. This can happen if a read com-
mand arrives before one or more write commands. Since the command handler stores replies in a buffer with more than one
entry, several commands may be processed even if no replies are sent. Data for read replies is read when the reply is sent and
writes coming after the read might have been performed before the read command if there was congestion in the transmitter.
To prevent this situation, the RMAP Buffer Disable (RD) bit can be set to force the command handler to only use one buffer.
The last control option for the command handler is to set the destination key, which is discussed in Section 11.6.2.

Table 32. GRSPW hardware RMAP handling of different packet type and command fields

BIT 7 BIT6 BIT 5 BIT4 BIT 3 BIT 2 COMMAND ACTION

Reserved Command
/Response

Write
/Read

Verify
data

before
write

Acknow
-ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.

 113

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single
address

Executed normally. Address
has to be word aligned and
data size a multiple of four.
Reply is sent. If alignment
restrictions are violated error
code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent
with error code 2.

0 1 0 1 1 1 Read-Modify-
Write incre-
menting
address

Executed normally. If length is
not one of the allowed rmw
values nothing is done and
error code is set to 11. If the
length was correct, alignment
restrictions are checked next. 1
byte can be rmw to any
address. 2 bytes must be half-
word aligned. 3 bytes are not
allowed. 4 bytes must be word
aligned. If these restrictions are
violated nothing is done and
error code is set to 10. If an
AHB error occurs error code is
set to 1. Reply is sent.

0 1 1 0 0 0 Write, single-
address, do not
verify before
writing, no
acknowledge

Executed normally. Address
has to be word aligned and
data size a multiple of four. If
alignment is violated nothing is
done. No reply is sent.

BIT 7 BIT6 BIT 5 BIT4 BIT 3 BIT 2 COMMAND ACTION

Reserved Command
/Response

Write
/Read

Verify
data

before
write

Acknow
-ledge

Increment
Address

114

0 1 1 0 0 1 Write, incre-
menting
address, do not
verify before
writing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, single-
address, do not
verify before
writing, send
acknowledge

Executed normally. Address
has to be word aligned and
data size a multiple of four. If
alignment is violated nothing is
done and error code is set to
10. If an AHB error occurs
error code is set to 1. Reply is
sent.

0 1 1 0 1 1 Write, incre-
menting
address, do not
verify before
writing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs
error code is set to 1. Reply is
sent.

0 1 1 1 0 0 Write, single
address, verify
before writing,
no acknowl-
edge

Executed normally. Length
must be 4 or less. Otherwise
nothing is done. Same align-
ment restrictions apply as for
rmw. No reply is sent.

0 1 1 1 0 1 Write, incre-
menting
address, verify
before writing,
no acknowl-
edge

Executed normally. Length
must be 4 or less. Otherwise
nothing is done. Same align-
ment restrictions apply as for
rmw. If they are violated noth-
ing is done. No reply is sent.

0 1 1 1 1 0 Write, single
address, verify
before writing,
send acknowl-
edge

Executed normally. Length
must be 4 or less. Otherwise
nothing is done and error code
is set to 9. Same alignment
restrictions apply as for rmw. If
they are violated nothing is
done and error code is set to
10. If an AHB error occurs
error code is set to 1. Reply is
sent.

BIT 7 BIT6 BIT 5 BIT4 BIT 3 BIT 2 COMMAND ACTION

Reserved Command
/Response

Write
/Read

Verify
data

before
write

Acknow
-ledge

Increment
Address

 115

11.7 AMBA interface
The AMBA interface consists of an APB interface, an AHB master interface, and DMA FIFOs. The APB interface provides access
to the user registers, which are described in Section 11.8. The DMA engines have 32-bit wide FIFOs to the AHB master interface,
which are used when reading and writing to the bus.

The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length. A burst is always started when
the FIFO is half-empty or if it can hold the last data for the packet. The burst containing the last data might have a shorter length if
the packet is not an even number of bursts in size.

The receiver DMA works in the same way except that it checks if the FIFO is half-full and then performs a burst write to the bus
that is half the FIFO size in length. The last burst might be shorter.

11.7.1 APB slave interface
As mentioned above, the APB interface provides access to the user registers which are 32-bits in width. Accesses to this interface
are required to be word aligned. The result is undefined if this restriction is violated.

11.7.2 AHB master interface
The GRSPW contains a single master interface used by both the transmitter and receiver DMA engines. The arbitration algorithm
between the channels is done so that the current owner always acquires the interface if requested. This will not lead to starvation
problems since the DMA engines always deassert their requests between accesses.

AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspecified length (HBURST = 0x001) if
RMAP is disabled. Byte and halfword accesses are always non-sequential. The burst length will be half the AHB FIFO size except
for the last transfer for a packet which might be smaller. Shorter accesses are also done during descriptor reads and status writes.

The AHB master also supports non-incrementing accesses where the address will be constant for several consecutive accesses.
HTRANS will always be non-sequential in this case, while for incrementing accesses it is set to sequential after the first access. This
feature is included to support non-incrementing reads and writes for RMAP.

If the GRSPW does not need the bus after a burst has finished there will be one wasted cycle (HTRANS = IDLE). The core provides
full support for ERROR, RETRY and SPLIT responses, while BUSY transfer types are never requested.

11.8 Registers
The UT699 has four SpaceWire nodes, each comprised of a GRSPW cores. Each core has its own set of registers mapped into APB
memory space. The APB mapping for each GRSPW core is listed in Figure 2. The relative offset of each register is shown in Table
33 below. GRSPW cores 3 and 4 have RMAP functionality, so any RMAP registers apply to these cores. Cores 1 and 2 do not have
RMAP functionality.

Table 33. GRSPW Registers

REGISTER APB ADDRESS OFFSET

SPW Control Register (SPWCTR) 0x0

SPW Status Register (SPWSTR) 0x4

SPW Node Address Register (SPWNDR) 0x8

SPW Clock Divisor Register (SPWCLK) 0xC

SPW Destination Key Register (SPWKEY) 0x10

SPW Time Register (SPWTIM) 0x14

SPW Timer and Disconnect Register (SPWTDR) 0x18

116

SPW DMA Channel Control and Status Register (SPWCHN) 0x20

SPW DMA Channel Receiver Maximum Length Register (SPWRXL) 0x24

SPW DMA Transmit Descriptor Table Address Register (SPWTXD) 0x28

SPW DMA Receive Descriptor Table Address Register (SPWRXD) 0x2C

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 RA RMAP Available
0: RMAP unavailable
1: Set to one if the RMAP command handler is available
Read=0 (cores 1 and 2); Read=1 (cores 3 and 4); Write=don’t care.

30 RX RX Unaligned Access
0: Unaligned writes not available for the receiver
1: Unaligned writes available for the receiver
Read=0; Write=don’t care.

29 RC RMAP CRC Available
0: RMAP CRC not available
1: RMAP CRC available
Read=0 (cores 1 and 2); Read=1 (cores 3 and 4); Write=don’t care.

28-18 Reserved

17 RD 0 RMAP Buffer Disable
0: All RMAP buffers are used
1: Only one RMAP buffer is used. This ensures that all RMAP
commands will be executed consecutively.

16 RE RMAP Enable
0: Disable RMAP command handler
1: Enable RMAP command handler

15-12 Reserved

REGISTER APB ADDRESS OFFSET

SPWCTR Address=0x80000[A/B/C/D]00

31 30 29 28 18 17 16 15 11 10 9 8 7 6 5 4 3 2 1 0
RA RX RC RESERVED RD RE RESERVED TR TT LI TQ - RS PM TI IE AS LS LD

Figure 84. SPW Control Register

 117

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

11 TR 0 Time RX Enable
0: Disable time-code receptions
1: Enable time-code receptions

10 TT 0 Time TX Enable
0: Disable time-code transmissions
1: Enable time-code transmissions

9 Link error IRQ (LI) Link Error IRQ
0: No interrupt
1: Generate interrupt when a link error occurs. Not reset.

8 TQ Tick-Out IRQ
0: No interrupt
1: Generate interrupt when a valid time-code is received. Not reset.

7 Reserved

6 RS 0 Reset
0: No action
1: Make complete reset of the SpaceWire node. Self clearing.

5 OPM 0 Open Packet Mode
0: Disable open-packet mode
1: Enable open packet mode

4 TI 0 Tick In
The host can generate a tick by writing a one to this field. This will
increment the timer counter and the new value is transmitted after
the current character is transferred.

3 IE 0 Interrupt Enable
0: No interrupt
1: Interrupt is generated when any of bits 8 to 10 is set and its
corresponding event occurs.

2 AS Autostart
0: No effect
1: Automatically start the link when a NULL has been received. Not
reset.

1 LS 1 Link Start
0: No effect
1: Start the link, i.e., allow a transition from ready to started state.

0 LD 0 Link Disable
0: No effect
1: Disable the SpaceWire codec.

118

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-24 Reserved

23-21 LS 0 Link State
This field indicates the current state of the start-up sequence.
0: Error-reset
1: Error-wait
2: Ready
3: Started
4: Connecting
5: Run

20-9 Reserved

8 EE 0 Early EOP/EEP
Read:
0: Packet received normally
1: Packet was received with an EOP after the first byte for a non-
RMAP packet or after the second byte for a RMAP packet.
Write:
0: No effect
1: Clear bit

7 IA 0 Invalid Address
Read:
0: Packet received normally
1: Packet was received with an invalid destination address field
Write:
0: No effect
1: Clear bit

6 WE 0 Write Synchronization Error
Read:
0: Packet received normally
1: Synchronization problem has occurred when receiving N-Chars.
Write:
0: No effect
1: Clear bit

5 Reserved

SPWSTR Address=0x80000[A/B/C/D]0A
31 24 23 21 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED EE IA WE -- PE DE ER CE TO

Figure 85. SPW Status Register

 119

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

4 PE 0 Parity Error
Read:
0: Packet received normally
1: A parity error has occurred
Write:
0: No effect
1: Clear bit

3 DE 0 Disconnect Error
Read:
0: No disconnection error
1: A disconnection error has occurred
Write:
0: No effect
1: Clear bit

2 ER 0 Escape Error
Read:
0: No escape error
1: An escape error has occurred
Write:
0: No effect
1: Clear bit

1 CE 0 Credit Error
Read:
0: No credit error
1: A credit has occurred
Write:
0: No effect
1: Clear bit

0 TO 0 Tick Out
Read:
0: No new time count
1: A new time count value was received and is stored in the time
counter field.
Write:
0: No effect
1: Clear bit

120

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 NODE_ADDRESS 254 8-Bit Node Address
Used for node identification on the SpaceWire network.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-8 CLOCK_DIVISOR_LINK 8-Bit Clock Divisor Link State Value
Used for the clock-divider when the link interface is in the
startup-state. Actual divisor value =
(CLOCK_DIVISOR_LINK + 1).

7-0 CLOCK_DIVISOR_RUN 8-Bit Clock Divisor Run State Value
Used for the clock-divider when the link interface is in the
run-state. Actual divisor value = (CLOCK_DIVISOR_RUN
+ 1).

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved 0

SPWNDR Address=0x80000[A/B/C/D]08
31 8 7 0

RESERVED NODE_ ADDRESS

Figure 86. SPW Node Address Register

SPWCLK Address=0x80000[A/B/C/D]0C
31 16 15 8 7 0

RESERVED CLOCK_DIVISOR_LINK CLOCK_DIVISOR_RUN

Figure 87. SPW Clock Divisor Register

SPWKEY Address=0x80000[A/B/C/D]10

31 8 7 0
RESERVED DESTINATION_KEY

Figure 88. SPW Destination Key Register

 121

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

7-0 DESTINATION_KE
Y

RMAP Destination Key

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-6 TIME_CTRL 0 Time Control Flags
The current value of the time control flags. Sent with time-code
resulting from a tick-in. Received control flags are also stored in this
field.

5-0 TIME_COUNTER 0 Time Counter
The current value of the system time counter. It is incremented for
each tick-in and the incremented value is transmitted. A tick-in
occurs when the Tick In (TI) bit in the SPW Control Register. The
field can also be written directly, but the written value will not be
transmitted. Received time-counter values are also stored in this
field.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-22 Reserved

21-12 DISCONNECT Disconnect Time Period
Used to generate the 850ns disconnect time period. The disconnect
period is (DISCONNECT + 3), e.g. to get an 850ns period, the
smallest number of clock cycles that is greater than or equal to
850ns should be calculated, and this values - 3 should be stored in
the field.

SPWTIM Address=0x80000[A/B/C/D]14

31 8 7 6 5 0
 RESERVED TIME_

CTRL
TIME_COUNTER

Figure 89. SPW Time Register

SPWTDR Address=0x80000[A/B/C/D]18

31 22 21 12 11 0
RESERVED DISCONNECT TIMER64

Figure 90. SPW Timer and Disconnect Register

122

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

11-0 TIMER64 Timer 6.4us and 12.8us
Used to generate the 6.4us and 12.8us time periods. Should be set to
the smallest number of clock cycles that is greater than or equal to
6.4us.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-13 Reserved

12 NS No Spill
0: If cleared, packets will be discarded when a packet is arriving
and there are no active descriptors.
1: If set, the GRSPW waits for a descriptor to be activated.

11 RD 0 RX Descriptors Available
Read:
0: Cleared by GRSPW when it encounters a disabled descriptor.
1: Indicates enabled descriptors in the descriptor table.
Write:
0: No active descriptors in the descriptor table.
1: Set to one to indicate to the GRSPW that there are enabled
descriptors in the descriptor table.

10 RX 0 RX Active
0: No DMA channel activity
1: Set if a reception to the DMA channel is currently active.

9 AT 0 Abort TX
0: No effect
1: Setting the bit aborts the currently transmitting packet and disable
transmissions. If no transmission is active, the only effect is to
disable transmissions. Self clearing.

SPWCHN Address=0x80000[A/B/C/D]20

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED NS RD RX AT RA TA PR PS AI RI TI RE TE

Figure 91. SPW DMA Channel Control and Status Regis-

 123

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

8 RA 0 RX AHB Error
0: No error response
1: An error response was detected on the AHB bus while this
receive DMA channel was accessing the bus. Cleared when written
with a one.

7 TA 0 TX AHB Error
0: No error response
1: An error response was detected on the AHB bus while this
transmit DMA channel was accessing the bus. Cleared when written
with a one.

6 PR 0 Packet Received
0: No new packet
1: This bit is set each time a packet has been received. Not self
clearing. Cleared when written with a one.

5 PS 0 Packet Sent
0: No packet sent
1: This bit is set each time a packet has been sent. Not self clearing.
Cleared when written with a one.

4 AI - AHB Error Interrupt
0: No interrupt will be generated
1: If set, an interrupt will be generated each time an AHB error
occurs when this DMA channel is accessing the bus. Not reset.

3 RI - Receive Interrupt
0: No interrupt will be generated
1: If set, an interrupt will be generated each time a packet has been
received. This happens if either the packet is terminated by an EEP
or EOP. Not reset.

2 TI - Transmit Interrupt
0: No interrupt will be generated
1: If set, an interrupt will be generated each time a packet is
transmitted. The interrupt is generated regardless of whether the
transmission was successful or not. Not reset.

1 RE 0 Receiver Enable
0: Channel is not allowed to receive packets
1: Channel is allowed to receive packets

124

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

0 TE 0 Transmitter Enable
Read:
0: Cleared by GRSPW when it encounters a disabled descriptor.
1: Indicates enabled descriptors in the descriptor table.
Write:
0: No active descriptors in the descriptor table.
1: Set to one to indicate to the GRSPW that there are enabled
descriptors in the descriptor table. Writing a one will cause the
GRSPW to read a new descriptor and try to transmit the packet to
which it points.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-25 Reserved

24-0 RX_MAX_LENGT
H

- Receiver Packet Maximum Length
The maximum number of bytes in a packet that may be received.
Only bits 24-2 are writable. Bits 1-0 always read 0. Not reset.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-10 TX_BASE_ADDRE
SS

- Transmitter Descriptor Table Base Address
Sets the base address of the descriptor table. Not reset.

9-4 TX_DESC_SELEC
T

0 Transmitter Descriptor Selector
This is the relative offset into the descriptor table and indicates
which descriptor is currently used by the GRSPW. For each new
descriptor read, TX_DESC_SELECT will increase by one and wrap
to zero when the field increments to 64.

3-0 Reserved

SPWTXD Address=0x80000[A/B/C/D]28

 31 10 9 4 3 0
TX_BASE_ADDRESS TX_DESC_SELECT RES

Figure 93. SPW Transmitter Descriptor Table Address Register

SPWRXL Address=0x80000[A/B/C/D]24

 31 25 24 0
RESERVED RX_MAX_LENGTH

Figure 92. SPW DMA Channel Receiver Max Length Register

 125

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-10 RX_BASE_ADDRE
SS

- Receiver Descriptor Table Base Address
Sets the base address of the descriptor table. Not reset.

9-4 RX_DESC_SELEC
T

0 Receiver Descriptor Selector
This is the relative offset into the descriptor table and indicates
which descriptor is currently used by the GRSPW. For each new
descriptor read, RX_DESC_SELECT will increase by one and wrap
to zero when the field increments to 64.

3-0 Reserved

SPWRXD Address=0x80000[A/B/C/D]2C

 31 10 9 4 3 0
RX_BASE_ADDRESS RX_DESC_SELECT RES

Figure 94. SPW Receiver Descriptor Table Address Register

126

12.0 CAN-2.0 Interface

12.1 Overview
The CAN-2.0 interfaces in UT699 is based on the CAN core from Opencores with an AHB slave interface for accessing all
CAN core registers. The CAN core is based on the Philips SJA1000 and has a compatible register map with a few excep-
tions. These exceptions are indicated in the register description tables and in Section 12.6. The CAN core supports both Bas-
icCAN and PeliCAN modes. In PeliCAN mode the extended features of CAN 2.0B are supported. The mode of operation is
chosen through the clock divider register.

This chapter will list the CAN core registers and their functionality. The Philips SJA1000 data sheet can be used as an addi-
tional reference.

The register map and functionality is different depending upon which mode of operation is selected. BasicCAN mode will
be described in Section 12.3, followed by PeliCAN in Section 12.4. The common registers (Clock Divisor and Bus Timing)
are described in Section 12.5. The register map also differs depending on whether the core is in operating mode or in reset
mode. After reset, the CAN core starts up in reset mode awaiting configuration. Operating mode is entered by clearing the
Reset Request (CR.0) bit in the Control Register. Set the bit to re-enter reset mode.

The UT699 implements two identical instances of the Opencores CAN core. Both operate completely independent of each
other. The AHB register mapping for each core is indicated in Table 2 of Section 1.3 of this manual.

12.2 AHB interface
All registers are one byte wide and the addresses specified in this document are byte addresses. Byte reads and writes should
be used when interfacing with this core. The read byte is duplicated on all byte lanes of the AHB bus. The interface is big
endian so the core expects the MSB at the lowest address.

The bit numbering in this document uses bit seven as the MSB and bit 0 as the LSB.

Figure 95. CAN Core Block Diagram

AHB slave interface

AMBA AHB

Buffer RAMCAN Core
CAN_RXI

CAN_TXO

CAN Core with AHB

IRQ

 127

12.3 BasicCAN mode

12.3.1 BasicCAN register map

Table 34. BasicCAN Address Allocation

ADDRESS OPERATING MODE RESET MODE

Read Write Read Write
0 Control Control Control Control
1 (0xFF) Command (0xFF) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 (0xFF) - Acceptance Code Acceptance Code
5 (0xFF) - Acceptance Mask Acceptance Mask
6 (0xFF) - Bus Timing 0 Bus Timing 0
7 (0xFF) - Bus Timing 1 Bus Timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 TX ID1 TX ID1 (0xFF) -
11 TX ID2, rtr, dlc TX ID2, rtr, dlc (0xFF) -
12 TX Data Byte 1 TX Data Byte 1 (0xFF) -
13 TX Data Byte 2 TX Data Byte 2 (0xFF) -
14 TX Data Byte 3 TX Data Byte 3 (0xFF) -
15 TX Data Byte 4 TX Data Byte 4 (0xFF) -
16 TX Data Byte 5 TX Data Byte 5 (0xFF) -
17 TX Data Byte 6 TX Data Byte 6 (0xFF) -
18 TX Data Byte 7 TX Data Byte 7 (0xFF) -
19 TX Data Byte 8 TX Data Byte 8 (0xFF) -
20 RX ID1 - RX ID1 -
21 RX ID2, rtr, dlc - RX ID2, rtr, dlc -
22 RX Data Byte 1 - RX Data Byte 1 -
23 RX Data Byte 2 - RX Data Byte 2 -
24 RX Data Byte 3 - RX Data Byte 3 -
25 RX Data Byte 4 - RX Data Byte 4 -
26 RX Data Byte 5 - RX Data Byte 5 -
27 RX Data Byte 6 - RX Data Byte 6 -
28 RX Data Byte 7 - RX Data Byte 7 -
29 RX Data Byte 8 - RX Data Byte 8 -
30 (0x00) - (0x00) -
31 Clock Divider Clock Divider Clock Divider Clock Divider

128

12.3.2. Control register
The Control Register contains interrupt enable bits as well as the reset request bit.

12.3.3 Command register
Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing a ‘1’ to CMR.0. It can only be aborted by writing ‘1’ to CMR.1 and only if the transfer has
not yet started. If the transmission has started it will not be aborted when setting CMR.1, but it will not be retransmitted if an
error occurs.

Release the receive buffer by setting the Release Receive Buffer bit (CMR.2) after reading the contents of the receive buffer. If
there is another message waiting in the FIFO, a new receive interrupt will be generated if enabled by setting the Receive Inter-
rupt bit (IR.0), and the Receive Buffer Status (SR.0) bit will be set again. Set the Clear Data Overrun bit (CMR.3) to clear the
Data overrun status bit.

Table 35. Bit Interpretation of Control Register (CR) (Address 0)

BIT NAME DESCRIPTION
CR.7 - reserved
CR.6 - reserved
CR.5 - reserved
CR.4 Overrun Interrupt Enable 1 - enabled, 0 - disabled
CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled
CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled
CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled
CR.0 Reset request Writing 1 to this bit aborts any ongoing transfer and enters

reset mode. Writing 0 returns to operating mode.

Table 36. Bit interpretation of Command Register (CMR) (Address 1)

BIT NAME DESCRIPTION
CMR.7 - reserved
CMR.6 - reserved
CMR.5 - reserved
CMR.4 - not used (go to sleep in SJA1000 core)
CMR.3 Clear Data Overrun Clear the Data Overrun status bit
CMR.2 Release Receive Buffer Free the current receive buffer for new reception
CMR.1 Abort Transmission Aborts a transmission that has not yet started
CMR.0 Transmission Request Starts the transfer of the message in the TX buffer

 31 10 9 4 3 0
RX_BASE_ADDRESS RX_DESC_SELECT RES

Figure 96. SPW Receiver Descriptor Table Address Register

 129

12.3.4 Status register
The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when the Release Receive Buffer command (CMR.2) is given and is set if there are more
messages available in the FIFO. The Data Overrun Status (SR.1) signals that a message that was accepted could not be
placed in the receive FIFO because there was not enough space left. Note: This bit differs from the SJA1000 behavior and is
set when the FIFO has been read out. When the Transmit Buffer Status is high, the transmit buffer can be written to by the
CPU. During an on-going transmission the buffer is locked and this bit is 0. The Transmission Complete bit is cleared when
a transmission request has been issued and will not be set again until a message has successfully been transmitted.

12.3.5 Interrupt register
The interrupt register signals to the CPU what caused the interrupt. The interrupt bits are only set if the corresponding inter-
rupt enable bit is set in the control register. The interrupt assignment for both CAN cores is shown in Figure 3 of Section 1.4.

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000 behavior where all bits are
reset on read in BasicCAN mode. This core resets the Receive Interrupt bit when the Release Receive Buffer command is
given (as in PeliCAN mode).

Note: Bit IR.5 through IR.7 read ‘1’. Bit IR.4 reads ‘0’.

Table 37. Bit Interpretation of Status Register (SR) (Address 2)

BIT NAME DESCRIPTION
SR.7 Bus Status 1 when the core is in the bus-off state and is not allowed to

have any influence on the bus
SR.6 Error Status At least one of the error counters have reached or exceeded

the CPU warning limit (96)
SR.5 Transmit Status 1 when transmitting a message
SR.4 Receive Status 1 when receiving a message
SR.3 Transmission Complete 1 indicates the last message was successfully transferred.
SR.2 Transmit Buffer Status 1 means CPU can write into the transmit buffer
SR.1 Data Overrun Status 1 if a message was lost because of no space in the FIFO
SR.0 Receive Buffer Status 1 if messages are available in the receive FIFO

Table 38. Bit Interpretation of Interrupt Register (IR) (Address 3)

BIT NAME DESCRIPTION
IR.7 - reserved
IR.6 - reserved
IR.5 - reserved
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data Overrun Interrupt Set when Data Overrun Status (SR.1) transitions from 0 to 1
IR.2 Error Interrupt Set when Error Status (SR.6) or Bus Status (SR.7) change
IR.1 Transmit Interrupt Set when Transmit Buffer is released (SR.2 transitions from

0 to 1)
IR.0 Receive Interrupt This bit is set while there are more messages in the fifo

130

12.3.6 Transmit buffer
The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages can be transmitted and
received. Extended Frame Format (EFF) messages on the bus are ignored.

If the RTR bit is set no data bytes will be sent, but DLC is still part of the frame and must be specified according to the
requested frame. It is possible to specify a DLC larger than eight bytes, but should not be done for compatibility reasons. If
DLC is greater than 8, only 8 bytes can be sent.

12.3.7 Receive buffer
The receive buffer on address 20 through 29 is the visible part of the 64-byte RX FIFO. Its layout is identical to that of the
transmit buffer.

12.3.8 Acceptance filter
Messages can be filtered based on their identifiers using the Acceptance Code and Acceptance Mask registers. Bits ID.10
through ID.3 of the 11-bit identifier are compared with the Acceptance Code Register. Only the bits set to ‘0’ in the Accep-
tance Mask Register are used for comparison. If a match is detected, the message is stored to the FIFO.

Table 39. Transmit Buffer Layout

ADDR NAME BITS

7 6 5 4 3 2 1 0
10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3
11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0
12 TX data 1 TX byte 1
13 TX data 2 TX byte 2
14 TX data 3 TX byte 3
15 TX data 4 TX byte 4
16 TX data 5 TX byte 5
17 TX data 6 TX byte 6
18 TX data 7 TX byte 7
19 TX data 8 TX byte 8

 131

12.4 PeliCAN mode

12.4.1 PeliCAN register map

Table 40. PeliCAN Address Allocation

#

OPERATING MODE RESET MODE

READ WRITE READ WRITE
0 Mode Mode Mode Mode
1 (0x00) Command (0x00) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 Interrupt enable Interrupt enable Interrupt Enable Interrupt Enable
5 reserved (0x00) - reserved (0x00) -
6 Bus Timing 0 - Bus Timing 0 Bus Timing 0
7 Bus Timing 1 - Bus Timing 1 Bus Timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 (0x00) - (0x00) -
11 Arbitration Lost Capture - Arbitration Lost

Capture
-

12 Error Code Capture - Error Code Capture -
13 Error Warning Limit - Error Warning

Limit
Error Warning
Limit

14 RX Error Counter - RX Error Counter RX Error Counter
15 TX Error Counter - TX Error Counter TX Error Counter
16 RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance Code 0 Acceptance Code 0
17 RX ID 1 RX ID 1 TX ID 1 TX ID 1 Acceptance Code 1 Acceptance Code 1
18 RX ID 2 RX ID 2 TX ID 2 TX ID 2 Acceptance Code 2 Acceptance Code 2
19 RX Data 1 RX ID 3 TX Data 1 TX ID 3 Acceptance Code 3 Acceptance Code 3
20 RX Data 2 RX ID 4 TX Data 2 TX ID 4 Acceptance Mask 0 Acceptance Mask 0
21 RX Data 3 RX Data 1 TX Data 3 TX Data 1 Acceptance Mask 1 Acceptance Mask 1
22 RX Data 4 RX Data 2 TX Data 4 TX Data 2 Acceptance Mask 2 Acceptance Mask 2
23 RX Data 5 RX Data 3 TX Data 5 TX Data 3 Acceptance Mask 3 Acceptance Mask 3
24 RX Data 6 RX Data 4 TX Data 6 TX Data 4 (0x00) -
25 RX Data 7 RX Data 5 TX Data 7 TX Data 5 (0x00) -
26 RX Data 8 RX Data 6 TX Data 8 TX Data 6 (0x00) -
27 FIFO RX Data 7 - TX Data 7 (0x00) -
28 FIFO RX Data 8 - TX Data 8 (0x00) -
29 RX Message Counter - RX Msg Counter -
30 (0x00) - (0x00) -
31 Clock Divider Clock Divider Clock Divider Clock Divider

132

The transmit and receive buffers have a different layout depending on if standard frame format (SFF) or extended frame for-
mat (EFF) is to be transmitted or received.

12.4.2 Mode register

Writing to MOD.1-3 can only be done when reset mode has been previously entered. In listen-only mode, the core will not
send any acknowledgements.

Note: Unlike the SJA1000, the Opencores CAN core does not become error passive and active error frames are still sent.

When in self-test mode, the core can complete a successful transmission without getting an acknowledgement if given the
Self Reception Request command (CMR.4). The core must still be connected to a real bus as it does not do an internal roll-
back.

12.4.3 Command register
Writing a ‘1’ to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by setting CMR.0. It can only be aborted by setting CMR.1 and only if the transfer has not yet
started. Setting CMR.0 and CMR.1 simultaneously will result in a so-called single shot transfer, i.e. the core will not try to
retransmit the message if not successful the first time.
Giving the Release Receive Buffer command (CMR.2) should be done after reading the contents of the receive buffer in
order to release the memory. If there is another message waiting in the FIFO, a new Receive Interrupt (IR.0) will be gener-
ated (if enabled), and the Receive Buffer Status bit (SR.0) will be set again.

Table 41. Bit Interpretation of Mode Register (MOD) (Address 0)

BIT NAME DESCRIPTION
MOD.7 - reserved
MOD.6 - reserved
MOD.5 - reserved
MOD.4 - not used (sleep mode in SJA1000)
MOD.3 Acceptance Filter Mode 1 - single filter mode, 0 - dual filter mode
MOD.2 Self-Test Mode Set if the controller is in self-test mode
MOD.1 Listen-Only Mode Set if the controller is in listen-only mode
MOD.0 Reset Mode Writing 1 to this bit aborts any ongoing transfer and enters

reset mode. Writing 0 returns to operating mode

Table 42. Bit Interpretation of Command Register (CMR) (Address 1)

BIT NAME DESCRIPTION
CMR.7 - reserved
CMR.6 - reserved
CMR.5 - reserved
CMR.4 Self Reception Request Transmits and simultaneously receives a message
CMR.3 Clear Data Overrun Clears the data overrun status bit
CMR.2 Release Receive Buffer Free the current receive buffer for new reception
CMR.1 Abort Transmission Aborts a not yet started transmission.
CMR.0 Transmission Request Starts the transfer of the message in the TX buffer

 133

The Self Reception Request bit (CMR.4) together with the self-test mode makes it possible to do a self test of the core with-
out any other cores on the bus. A message will simultaneously be transmitted and received, and both receive and transmit
interrupts will be generated.

12.4.4 Status register
The status register is read only and reflects the current status of the core.

Receive Buffer Status (SR.0) is cleared when there are no more messages in the receive FIFO. The Data Overrun Status
(SR.1) signals that a message that was accepted could not be placed in the FIFO because there was not enough space left.

Note: This bit differs from the SJA1000 behavior and is set first when the FIFO has been read out.

When the Transmit Buffer Status (SR.2) is high the transmit buffer is available to be written to by the CPU. During an on-
going transmission the buffer is locked and this bit is ‘0’.
The Transmission Complete bit (SR.3) is cleared when a Transmission Request (CMR0) or Self Reception Request (CMR.4)
has been issued and will not be set again until a message has successfully been transmitted.

12.4.5 Interrupt register
The Interrupt Register signals to CPU what caused an interrupt. The interrupt bits are only set if the corresponding interrupt
enable bit is set in the Interrupt Enable Register. The interrupt assignment for both CAN cores is shown in Table 3 of Section
1.4. This register is reset on read with the exception of IR.0 which is reset when the FIFO has been emptied.

Table 43. Bit Interpretation of Command Register (SR) (Address 2)

BIT NAME DESCRIPTION
SR.7 Bus Status 1 when the core is in bus-off and not involved in bus activi-

ties
SR.6 Error Status At least one of the error counters have reached or exceeded

the error warning limit.
SR.5 Transmit Status 1 when transmitting a message
SR.4 Receive Status 1 when receiving a message
SR.3 Transmission Complete 1 indicates the last message was successfully transferred
SR.2 Transmit Buffer Status 1 means CPU can write into the transmit buffer
SR.1 Data Overrun Status 1 if a message was lost because no space in fifo
SR.0 Receive Buffer Status 1 if messages available in the receive fifo

Table 44. Bit Interpretation of Interrupt Register (IR) (Address 3)

BIT NAME DESCRIPTION
IR.7 Bus Error Interrupt Set if an error on the bus has been detected
IR.6 Arbitration Lost Interrupt Set when the core has lost arbitration
IR.5 Error Passive Interrupt Set when the core goes between error active and error pas-

sive
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data Overrun Interrupt Set when Data Overrun Status bit is set
IR.2 Error Warning Interrupt Set on every change of the error status or bus status
IR.1 Transmit Interrupt Set when the transmit buffer is released
IR.0 Receive Interrupt Set while the receive FIFO is not empty.

134

12.4.6 Interrupt enable register
Interrupts sources can be enabled or disabled in the Interrupt Enable Register. If a bit is enabled, the corresponding interrupt
can be generated.

12.4.7 Arbitration lost capture register

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration lost capture register.
The register will not change content again until read out.

12.4.8 Error code capture register

When a bus error occurs, the Error Code Capture Register is set according to the type of error that occurred, i.e., if it
occurred while transmitting or receiving, and where in the frame it occurred. As with the ALC register, the ECC register will
not change value until it has been read out. The following table shows how to interpret bit ECC.7-6.

Table 45. Bit Interpretation of Interrupt Enable Register (IER) (Address 4)

BIT NAME DESCRIPTION
IR.7 Bus Error Interrupt 1 - enabled, 0 - disabled
IR.6 Arbitration Lost Interrupt 1 - enabled, 0 - disabled
IR.5 Error Passive Interrupt 1 - enabled, 0 - disabled
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data Overrun Interrupt 1 - enabled, 0 - disabled
IR.2 Error Warning Interrupt 1 - enabled, 0 - disabled.
IR.1 Transmit Interrupt 1 - enabled, 0 - disabled
IR.0 Receive Interrupt 1 - enabled, 0 - disabled

Table 46. Bit Interpretation of Arbitration Lost Capture Register (ALC) (Address 11)

BIT NAME DESCRIPTION
ALC.7-5 - reserved
ALC.4-0 Bit number Bit where arbitration was lost

Table 47. Bit Interpretation of Error Code Capture Register (ECC) (Address 12)

BIT NAME DESCRIPTION
ECC.7-6 Error code Error code number
ECC.5 Direction 1 - Reception, 0 - transmission error
ECC.4-0 Segment Location in frame where error occurred

 135

The table below indicates how to interpret ECC.4-0.

Table 48. Error Code Interpretation

ECC.7-6 DESCRIPTION
0 Bit error
1 Form error
2 Stuff error
3 Other

Table 49. Bit Interpretation of ECC.4-0

ECC.4-0 DESCRIPTION
0x03 Start of frame
0x02 ID.28 - ID.21
0x06 ID.20 - ID.18
0x04 Bit SRTR
0x05 Bit IDE
0x07 ID.17 - ID.13
0x0F ID.12 - ID.5
0x0E ID.4 - ID.0
0x0C Bit RTR
0x0D Reserved bit 1
0x09 Reserved bit 0
0x0B Data length code
0x0A Data field
0x08 CRC sequence
0x18 CRC delimiter
0x19 Acknowledge slot
0x1B Acknowledge delimiter
0x1A End of frame
0x12 Intermission
0x11 Active error flag
0x16 Passive error flag
0x13 Tolerate dominant bits
0x17 Error delimiter
0x1C Overload flag

136

12.4.9 Error warning limit register
This registers allows for setting the CPU error warning limit. The default is 96. Note: This register is only writable in reset
mode.

12.4.10 RX error counter register (address 14)
This register shows the value of the RX error counter. It is writable in reset mode. A bus-off event resets this counter to 0.

12.4.11 TX error counter register (address 15)
This register shows the value of the TX error counter. It is writable in reset mode. If a bus-off event occurs, this register is
configured to count down the protocol-defined 128 occurrences of the bus-free signal. The status of the bus-off recovery can
be read out from this register. The CPU can force a bus-off by writing 255 to this register. Unlike the SJA1000, this core sig-
nals bus-off immediately, not initially when entering operating mode. The bus-off recovery sequence starts when entering
operating mode after writing 255 to this register in reset mode.

12.4.12 Transmit buffer
The transmit buffer is write-only and is mapped to address 16 to 28. Reading of this area is mapped to the receive buffer
described in the next section. The layout of the transmit buffer depends on whether a standard frame (SFF) or an extended
frame (EFF) is to be sent as seen below.

TX frame information
This field has the same layout for both SFF and EFF frames.

WRITE (SFF) WRITE (EFF)
16 TX Frame Information TX Frame Information
17 TX ID 1 TX ID 1
18 TX ID 2 TX ID 2
19 TX Data1 TX ID 3
20 TX Data 2 TX ID 4
21 TX Data 3 TX Data 1
22 TX Data 4 TX Data 2
23 TX Data 5 TX Data 3
24 TX Data 6 TX Data 4
25 TX Data 7 TX Data 5
26 TX Data 8 TX Data 6
27 - TX Data 7
28 - TX Data 8

31 8 7 6 5 4 3 0
RESERVED FF RTR -- DLC.0 - DLC.3

Figure 97. TX Frame Information Address 16

 137

TX Identifier 1
This field is the same for both SFF and EFF frames.

TX Identifier 2, SFF Frame

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7 FF - FF selects the frame format, i.e. whether this is to be interpreted as
an extended or standard frame. 1 = EFF, 0 = SFF.

6 RTR 0 RTR should be set to 1 for a Remote Transmission Request frame.

5-4 -- Don’t care.

3-0 DLC.0 - DLC.3 DLC specifies the Data Length Code and should have a value
between 0 and 8. If the value is greater than 8, only 8 bytes will be
transmitted.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ID.21 - ID.28 The top eight bits of the identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-5 ID.18 - ID.20 Bottom three bits of an SFF identifier.

4-0 -- Don’t care.

31 8 7 0
RESERVED ID.21 - ID.28

Figure 98. TX Identifier 1 Address 17

31 8 7 5 4 0
 RESERVED ID.18 - ID.20 --

Figure 99. TX Identifier 2 Address 18

138

TX Identifier 2, EFF Frame

TX Identifier 3, EFF Frame

TX identifier 4, EFF frame

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ID.13 - ID.20 Bit 20:13 of 29 bit EFF identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ID.5 - ID.12 Bit 12:5 of 29 bit EFF identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-3 ID.0 - ID.4 Bit 4:0 of 29 bit EFF identifier.

2-0 -- Don’t care.

31 8 7 0
 RESERVED ID.13 - ID.20

Figure 100. TX Identifier 2 Address 18

31 8 7 0
 RESERVED ID.5-ID.12

Figure 101. TX Identifier 3 Address 19

31 8 7 3 2 0
 RESERVED ID.0 - ID.4 --

Figure 102. TX Identifier 4 Address 20

 139

Data field
The data field is located at addresses 19 to 26 for SFF frames, and at address 21 to 28 for EFF frames. The data is transmitted
starting from the MSB at the lowest address.
12.4.13 Receive buffer

RX frame information
This field has the same layout for both SFF and EFF frames.

READ (SFF) READ (EFF)
16 RX Frame Information RX Frame Information
17 RX ID 1 RX ID 1
18 RX ID 2 RX ID 2
19 RX Data 1 RX ID 3
20 RX Data 2 RX ID 4
21 RX Data 3 RX Data 1
22 RX Data 4 RX Data 2
23 RX Data 5 RX Data 3
24 RX Data 6 RX Data 4
25 RX Data 7 RX Data 5
26 RX Data 8 RX Data 6
27 RX FI of next message in fifo RX Data 7
28 RX ID1 of next message in fifo RX Data 8

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7 FF Frame format of received message. 1 = EFF, 0 = SFF.

6 RTR 1 if RTR frame.

5-4 0 Always read 0.

3-0 DLC.0 - DLC.3 DLC specifies the Data Length Code.

31 8 7 6 5 4 3 0
 RESERVED FF RTR 0 DLC.0-DLC.3

Figure 103. RX Frame Information Address 16

140

RX identifier 1
This field is the same for both SFF and EFF frames.

RX identifier 2, SFF frame

RX identifier 2, EFF frame

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ID.21 - ID.28 The top eight bits of the identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-5 ID.18 - ID.20 Bottom three bits of an SFF identifier.

4 RTR 1 if RTR frame.

3-0 0 Always read 0.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 8 7 0
 RESERVED ID.21-ID.28

Figure 104. RX Identifier 1 Address 17

31 8 7 5 4 3 0
RESERVED ID.18-ID.20 RTR 0

Figure 105. RX Identifier 2 Address 18

31 8 7 0
 RESERVED ID.13-ID.20

Figure 106. RX Identifier 2 Address 18

 141

RX identifier 3, EFF frame

RX identifier 4, EFF frame

Data field
The data field is located at address 19 to 26 for SFF frames, and at addresses 21 to 28 for EFF frames.

12.4.14 Acceptance filter
The acceptance filter can be used to filter out messages not meeting certain demands. If a message is filtered out, it will not be
put into the receive FIFO and the CPU will not have to process it.

31-8 Reserved

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

7-0 ID.13 - ID.20 Bit 20:13 of 29 bit EFF identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ID.5 - ID.12 Bit 12:5 of 29 bit EFF identifier.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-3 ID.0 - ID.4 Bit 4:0 of 29 bit EFF identifier

2 RTR 1 if RTR frame

1-0 0 Don’t care.

31 8 7 0
 RESERVED ID.5-ID.12

Figure 107. RX Identifier 3 Address 19

31 8 7 3 2 1 0
 RESERVED ID.0-ID.4 RTR 0

Figure 108. RX Identifier 4 Address 20

142

There are two different filtering modes: Single filter mode and dual filter mode. The mode is selected by the Acceptance Fil-
ter Mode bit (MOD.3) in the Mode Register. In single filter mode, a single filter is used. In dual filter, two smaller filters are
used. If there is a match with either filter, the message is accepted. Each filter consists of an acceptance code and an accep-
tance mask. The Acceptance Code registers are used for specifying the pattern to match, and the Acceptance Mask registers
specify which bits to use for comparison. In total, eight registers are used for the acceptance filters as shown in the following
table.
Note: The registers are only read/writable in reset mode.

Single filter mode, standard frame
When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the incoming message in
the following way:
ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are unused.
ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers select which bits are used for comparison. A set bit in the mask register means
don’t care.

Single filter mode, extended frame
When receiving an extended frame in single filter mode the registers ACR0-3 are compared against the incoming message
in the following way:
ACR0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit
ACR3.1-0 are unused.

The corresponding bits in the AMR registers select which bits are used for comparison. A set bit in the mask register means
don’t care.

Dual filter mode, standard frame
When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the incoming message in
the following way:

Table 50. Acceptance Filter Registers

ADDRESS DESCRIPTION
16 Acceptance Code 0 (ACR0)
17 Acceptance Code 1 (ACR1)
18 Acceptance Code 2 (ACR2)
19 Acceptance Code 3 (ACR3)
20 Acceptance Mask 0 (AMR0)
21 Acceptance Mask 1 (AMR1)
22 Acceptance Mask 2 (AMR2)
23 Acceptance Mask 3 (AMR3)

 143

Filter 1
ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are compared against upper nibble of data byte 1
ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2
ACR2.7-0 & ACR3.7-5 are compared to ID.28-18
ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers select which bits are used for comparison. A set bit in the mask register means
don’t care.

Dual filter mode, extended frame
When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the incoming message in
the following way:

Filter 1
ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers select which bits are used for comparison. A set bit in the mask register means
don’t care.

12.4.15 RX Message Counter
The RX message counter register at address 29 holds the number of messages currently stored in the receive FIFO. The top
three bits are always 0.

12.5 Common registers
There are three common registers that are at the same addresses and have the same functionality in both BasiCAN and Peli-
CAN mode. These are the Clock Divider Register and Bit Timing Registers 0 and 1.
12.5.1 Clock Divider Register
The only function of this register in the GRLIB version of the Opencores CAN is to choose between PeliCAN and Basi-
CAN.

Table 51. Bit Interpretation of Clock Divider Register (CDR) (Address 31)

BIT NAME DESCRIPTION
CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN
CDR.6 - unused (cbp bit of SJA1000)
CDR.5 - unused (rxinten bit of SJA1000)
CDR.4 - reserved
CDR.3 - reserved
CDR.2 - reserved
CDR.1 - reserved
CDR.0 - reserved

144

12.5.2 Bus timing 0

The CAN core system clock is calculated as:
tscl = 2*tclk*(BRP+1)
where tclk is the system clock.

The sync jump width defines how many clock cycles (tscl) a bit period may be adjusted with by one re-synchronization.

12.5.3 Bus timing 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown in the equations below:
ttseg1 = tscl * (TSEG1+1)
ttseg2 = tscl * (TSEG2+1)
tbit = ttseg1 + ttseg2 + tscl

The additional tscl term comes from the initial sync segment.
Sampling is done between TSEG1 and TSEG2 in the bit period.

12.6 Design considerations
This section lists the known differences between this CAN controller and the SJA1000 on which is it based.
• All bits related to sleep mode are unavailable
• Output control and test registers do not exist (reads 0x00)
• Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented
• Data overrun IRQ and status not set until FIFO is read out

BasicCAN specific differences:
• The receive IRQ bit is not reset on read (works like in PeliCAN mode)
• Bit CR.6 always reads 0 and is not a flip-flop with no effect as in the SJA1000

PeliCAN specific differences:
• Writing 256 to TX error counter gives immediate bus-off when still in reset mode
• Read Buffer Start Address register does not exist
• Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)
• The core transmits active error frames in Listen only mode

Table 52. Bit Interpretation of Bus Timing 0 Register (BTR0) (Address 6)

BIT NAME DESCRIPTION
BTR0.7-6 SJW Synchronization jump width
BTR0.5-0 BRP Baud rate prescaler

Table 53. Bit Interpretation of Bus Timing 1 Register (BTR1) (Address 7)

BIT NAME DESCRIPTION
BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point

BTR1.6-4 TSEG2 Time segment 2
BTR1.3-0 TSEG1 Time segment 1

 145

13.0 Ethernet Media Access Controller (MAC)

13.1 Overview
Aeroflex Gaisler’s Ethernet Media Access Controller (GRETH) provides an interface between an AMBA AHB bus and an
Ethernet network. It supports 10/100 Mbit speed in both full- and half-duplex modes. The AMBA interface consists of an
APB interface for configuration and control and an AHB master interface that handles the dataflow. The dataflow is handled
through DMA channels. There is one DMA engine for the transmitter and one for the receiver. Both share the same AHB
master interface. The Ethernet interface supports the MII interface, which should be connected to an external PHY. The
GRETH also provides access to the MII management interface which is used to configure the PHY.

13.2 Operation

13.2.1 System overview
The GRETH consists of two functional units: The DMA channels and the MDIO interface.

The main functionality consists of the DMA channels, which are used to transfer data between an AHB bus and an Ethernet
network. There is one transmitter DMA channel and one Receiver DMA channel. The operation of the DMA channels is
controlled through registers accessible through the APB interface.

The MDIO interface is used for accessing configuration and status registers in one or more PHYs connected to the MAC.
The operation of this interface is also controlled through the APB interface.

The Media Independent Interface (MII) is used for communicating with the PHY. There is an Ethernet transmitter which
sends all data from the AHB domain on the Ethernet using the MII interface. Correspondingly, there is an Ethernet receiver
which stores all data from the Ethernet on the AHB bus. Both of these interfaces use FIFOs when transferring the data
streams.

AHB
APB

Ethernet MAC

Registers MDIO

EMDIO

EMDC

AHB Master
Interface

Transmitter

Receiver

Transmitter

Receiver

DMA Engine

DMA Engine

FIFO

FIFO

ETX_EN
ETX_ER
ETXD[3:0]
ETX_CLK
ERX_CRS
ERX_COL

ERX_DV
ERX_ER
ERXD[3:0]
ERX_CLK

Figure 109. Block Diagram of the Internal Structure of the GRETH

146

13.2.2 Protocol support
The GRETH is implemented according to IEEE standard 802.3-2002. There is no support for the optional control sublayer
and no multicast addresses can be assigned to the MAC. This means that packets with type 0x8808 (the only currently defined
control packets) are discarded.

13.2.3 Hardware requirements
There are three clock domains: The AHB clock, the Ethernet receiver clock and the Ethernet transmitter clock. Both full-
duplex and half-duplex operating modes are supported and both can be run at either 10 Mbit/s or 100 Mbit/s. The system fre-
quency requirement (SYSCLK) is 2.5 MHz for 10 Mbit/s operation and 18 Mhz for 100 Mbit/s operation.

13.2.4 Transmitter DMA interface
The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission is done using descrip-
tors located in memory.

13.2.5 Setting up a descriptor.
A single descriptor is shown in Figures 110a and 110b. The number of bytes to be sent should be set in the Length field and the
Address field should point to the data. The address must be word-aligned. If the Interrupt Enable (IE) bit is set, an interrupt will
be generated when the packet has been sent (this requires that the Transmitter Interrupt (TI) bit in the Control Register also be
set). The interrupt will be generated regardless of whether the packet was transmitted successfully or not. The Wrap (WR) bit
is also a control bit that should be set before transmission and it will be explained later in this section.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15 AL Attempt Limit Error
Set if the packet was not transmitted because the maximum
number of attempts was reached.

14 UE Underrun Error
Set if the packet was incorrectly transmitted due to a FIFO underrun
error.

13 IE Interrupt Enable
An interrupt will be generated when the packet from this descriptor
has been sent provided that the Transmitter Interrupt (TI) enable bit
in the Control Register is set. The interrupt is generated regardless
if the packet was transmitted successfully or if it terminated with an
error.
0: Disable interrupts
1: Enable interrupts

Offset = 0x0

31 16 15 14 13 12 11 10 0
RESERVED AL UE IE WR EN LENGTH

Figure 110a. Ethernet Transmitter Descriptor

 147

To enable a descriptor the Enable (EN) bit must be set. After a descriptor is enabled, it should not be modified until the Enable bit
has been cleared.
13.2.6 Starting transmissions
Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the descriptors must first be set in
the GRETH. This is done in the Transmitter Descriptor Pointer Register. The address must be aligned to a 1 kB boundary. Bits 31:10
hold the base address of descriptor area, while bits 9:3 form a pointer to an individual descriptor. The first descriptor should be
located at the base address and when it has been used by the GRETH, the Descriptor Pointer field is incremented by eight to point to
the next descriptor. The pointer will automatically wrap back to zero after the last 1 kB boundary has been reached at address offset
0x3F8. The Wrap (WR) bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB boundary.
The Descriptor Pointer field has also been made writable for maximum flexibility. However, care should be taken when writing to
the Descriptor Pointer Register. It should never be modified when a transmission is active. The final step to activate the transmission
is to set the Transmit Enable (TE) bit in the control register. This tells the GRETH there are active descriptors in the descriptor table.
This bit should always be set when new descriptors are enabled, even if transmissions are already active. The descriptors must
always be enabled before the Transmit Enable bit is set.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

12 WR Wrap
Set to one to make the descriptor pointer wrap to zero after this
descriptor has been used. If this bit is not set the pointer will incre-
ment by 8. The pointer automatically wraps to zero when the 1 kB
boundary of the descriptor table is reached.
0: Wrap disabled
1: Wrap enabled

11 EN Enable
Set to one to enable the descriptor. Should always be the last bit set
in the descriptor fields.

0: Descriptor disabled
1: Descriptor enabled

10-0 LENGTH The number of bytes to be transmitted.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-2 Address Pointer to the buffer area from where the packet data will be
loaded.

1-0 Reserved Read=00b; Write=don’t care.

Offset = 0x4

31 2 1 0
ADDRESS RESERVED

Figure 110b. Ethernet Transmitter Descriptor

148

13.2.7 Descriptor handling after transmission
When a transmission of a packet has finished, status is written to the first word in the corresponding descriptor. The Underrun
Error (UE) bit is set if the FIFO became empty before the packet was completely transmitted. The Attempt Limit Error (AL) bit
is set if more collisions occurred than allowed. The packet was successfully transmitted only if both of these bits are zero. The
other bits in the first descriptor word are set to zero after transmission while the second word is left untouched.

The Enable bit should be used as the indicator when a descriptor can be used again, which is when it has been cleared by the
GRETH. There are three bits in the GRETH status register that hold transmission status. The Transmitter Error (TE) bit is set
each time a transmission ended with an error (when at least one of the two status bits in the transmitter descriptor has been set).
The Transmitter Interrupt (TI) is set each time a transmission ended successfully. The Transmitter AHB Error (TA) bit is set
when an AHB error was encountered either when reading a descriptor or when reading packet data. Any active transmissions are
aborted and the transmitter is disabled. The transmitter can be activated again by setting the Transmit Enable bit in the Control
Register.

13.2.8 Setting up the data for transmission
The data to be transmitted should be placed beginning at the address pointed by the descriptor Address field of the transmitter
descriptor. The GRETH does not add the Ethernet address and type fields, so they must also be stored in the data buffer. The 4
byte Ethernet CRC is automatically appended to the end of each packet. Each descriptor will be sent as a single Ethernet packet.
If the size field in a descriptor is greater than 1514 byte, the packet will not be sent.

13.2.9 Receiver DMA interface
The receiver DMA interface is used for receiving data from an Ethernet network. The reception is done using descriptors located
in memory.

13.2.10 Setting up descriptors
A single descriptor is shown in Figure 111a. The address field should point to a word-aligned buffer where the received data is to
be stored. The GRETH never stores more than 1514 byte to the buffer. If the Interrupt Enable (IE) bit is set, an interrupt will be
generated when a packet has been received to this buffer (this requires that the Receiver Interrupt (RI) bit in the Control Register
be set). The interrupt will be generated regardless of whether the packet was received successfully or not. The Wrap (WR) bit is
also a control bit that should be set before the descriptor is enabled and it will be explained later in this section.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-18 Reserved

17 OE Overrun Error
Set if the frame was incorrectly received due to a FIFO overrun.

16 CE CRC Error
Set if a CRC error was detected in this frame.

15 FT Frame Too Long
Set if a frame larger than the maximum size was received. The
excessive part was truncated.

Offset = 0x0

31 18 17 16 15 14 13 12 11 10 0
RESERVED OE CE FT AE IE WR EN LENGTH

Figure 111a. Ethernet Receiver Descriptor

 149

13.2.11 Starting reception
Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the descriptors must first be set in
the GRETH. This is done in the Receiver Descriptor Pointer Register. The address must be aligned to a 1 kB boundary. Bits
31:10 hold the base address of the descriptor area while bits 9:3 form a pointer to an individual descriptor. The first descriptor
should be located at the base address and when it has been used by the GRETH, the pointer field is incremented by 8 to point to
the next descriptor. The pointer automatically wraps back to zero when the last 1 kB boundary has been reached at address offset
0x3F8. The Wrap (WR) bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB boundary.
The Descriptor Pointer field has also been made writable for maximum flexibility, but care should be taken when writing to the
descriptor pointer register. It should never be modified when reception is active.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

14 AE Alignment Error
Set if an odd number of nibbles were received.

13 IE Interrupt Enable
An interrupt will be generated when a packet has been received to
this descriptor provided the Receiver Interrupt (RI) enable bit in the
Control Register is set. The interrupt is generated regardless if the
packet was received successfully or if it terminated with an error.

0: Interrupts disabled
1: Interrupts enabled

12 Wrap (WR) Set to one to make the descriptor pointer wrap to zero after this
descriptor has been used. If this bit is not set, the pointer will
increment by 8. The pointer automatically wraps to zero when the 1
kB boundary of the descriptor table is reached.

0: Wrap disabled
1: Wrap enabled

11 Enable (EN) Enable
Set to one to enable the descriptor. Should always be set last of all
the descriptor fields.

0: Descriptor disabled
1: Descriptor enabled

10-0 LENGTH The number of bytes received by this descriptor.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-2 Address Pointer to the buffer area from where the packet data will be
loaded.

1-0 Reserved Read=00b; Write=don’t care.

Offset = 0x4

31 2 1 0
ADDRESS RESERVED

Figure 111b. Ethernet Receiver Descriptor

150

The final step to activate reception is to set the Receiver Enable (RE) bit in the Control Register. This will make the GRETH
read the first descriptor and wait for an incoming packet.

13.2.12 Descriptor handling after reception
The GRETH indicates a completed reception by clearing the descriptor’s Enable bit. Control bits WR and IE are also
cleared. The number of received bytes is shown in the Length field. The parts of the Ethernet frame stored are the destina-
tion address, source address, type, and data fields. Bits 17:14 in the first descriptor word are status bits indicating different
receive errors. All four bits are zero after a reception without errors. The status bits are described in preceeding table. Pack-
ets arriving that are smaller than the minimum Ethernet size of 64 bytes are not considered valid and are discarded. The cur-
rent receive descriptor will be left untouched and used for the first packet arriving with an accepted size. The Too Samll (TS)
bit in the Status Register is set each time this event occurs.
If a packet is received with an address not accepted by the MAC, the Invalid Address (IA) bit in the Status Register
will be set.
Packets larger than maximum size cause the Frame Too Long (FT) bit in the receiver descriptor to be set. In this case, the
Length field is not guaranteed to hold the correct value of received bytes. The counting stops after the word containing the
last byte up to the maximum size limit has been written to memory.
The address word of the descriptor is never touched by the GRETH.

13.2.13 Reception with AHB errors
If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the Status Register will be
set and the receiver is disabled. The current reception is aborted. The receiver can be enabled again by setting the Receive
Enable (RE) bit in the Control Register.

13.2.14 MDIO interface
The MDIO interface provides access to PHY configuration and status registers through a two-wire interface which is
included in the MII interface. The GRETH provides full support for the MDIO interface.
The MDIO interface can be used to access from 1 to 32 PHYs containing 1 to 32 16-bit registers. A read transfer is set up by
writing to the PHY Address and Register Address fields of the MDIO Control and Status Register and setting the Read (RD)
bit. This causes the Busy (BU) bit to be set, and the operation is finished when the Busy bit is cleared. If the operation was
successful, the Link Fail (LF) bit is cleared and the data field contains the read data. An unsuccessful operation is indicated
by the Link Fail bit being set. The data field is undefined in this case.
A write operation is started by writing to the 16-bit Data field and to the PHY Address and Register field of the MDIO Con-
trol Register, and setting the Write (WR) bit. The operation is finished when the Busy (BU) bit is cleared and it was success-
ful if the Link Fail bit is zero.

13.2.15 Media independent interfaces
There are several interfaces defined between the MAC sublayer and the physical layer. The GRETH supports the Media
Independent Interface. The MII was defined in the 802.3 standard and is most commonly supported. The Ethernet interface
has been implemented according to this specification and uses 16 signals

13.2.16 Software drivers
Drivers for the GRETH MAC is provided for the following operating systems: RTEMS, eCos, uClinux and Linux-2.6. The
drivers are freely available in full source code under the GPL license from Aeroflex Gaisler.

 151

13.3 Registers
The core is programmed through registers mapped into APB address space.

Table 54. GRETH Registers

REGISTER APB ADDRESS

Ethernet Control Register (ETHCTR) 0x80000E00

Ethernet Status and Interrupt Source Register (ETHSIS) 0x80000E04

Ethernet MAC Address MSB (MACMSB) 0x80000E08

Ethernet MAC Address LSB (MACLSB) 0x80000E0C

Ethernet MDIO Control and Status Register (ETHMDC) 0x80000E10

Ethernet Transmitter Descriptor Pointer Register (ETHTDP) 0x80000E14

Ethernet Receiver Descriptor Pointer Register (ETHRDP) 0x80000E18

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31 ED EDCL Available
0: EDCL unavailable
1: EDCL available
Read=0; Write=don’t care.

30-7 Reserved

6 RS -- Reset
Setting this bit resets the GRETH core. Self clearing.

5 OPM -- Open Packet Mode
If set, the GRETH operates in open packet mode, which means it
will receive all packets regardless of the destination address.
0: Not open-packet mode
1: Operates in open-packet mode
Not reset.

4 FD -- Full Duplex
0: GRETH operates in half-duplex mode
1: GRETH operates in full-duplex mode
Not reset.

ETHCTR Address = 0x80000E00

31 30 7 6 5 4 3 2 1 0
ED RESERVED RS PR FD RI TI RE TE

Figure 112. Ethernet Control Register

152

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

3 RI -- Enable Receiver Interrupts
An interrupt will be generated each time a packet is
received when this bit is set. The interrupt is generated
regardless if the packet was received successfully or if it
terminated with an error. Not reset.
0: Receiver interrupts disabled
1: Receiver interrupts enabled

2 TI Enable Transmitter Interrupts
An interrupt will be generated each time a packet is trans-
mitted when this bit is set. The interrupt is generated
regardless if the packet was transmitted successfully or if
it terminated with an error. Not reset.
0: Transmitter interrupts disabled
1: Transmitter interrupts enabled

1 RE 0 Receive Enable
Should be written with a one each time new descriptors are enabled.
As long as this bit is one, the GRETH will read new descriptors and
as soon as it encounters a disabled descriptor it will stop until RE is
set again. This bit should be written with a one after the new
descriptors have been enabled.

0 TE 0 Transmit Enable
Should be written with a one each time new descriptors are enabled.
As long as this bit is one the GRETH reads new descriptors and as
soon as it encounters a disabled descriptor it will stop until TE is set
again. This bit should be written with a one after the new descriptors
have been enabled.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7 IA 0 Invalid Address
A set bit indicates a packet with an address not accepted by the
MAC was received. Cleared when written with a one.

6 TS 0 Too Small
A set bit indicates a packet smaller than the minimum size was
received. Cleared when written with a one.

ETHSIS Address = 0x80000E04

31 8 7 6 5 4 3 2 1 0
RESERVED IA TS TA RA TI RI TE RE

Figure 113. GRETH Status and Interrupt Source Register

 153

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

5 TA -- Transmitter AHB Error
A set bit indicates an AHB error was encountered in transmitter
DMA engine. Cleared when written with a one. Not reset.

4 RA -- Receiver AHB Error
A set bit indicates an AHB error was encountered in receiver DMA
engine. Cleared when written with a one. Not reset.

3 TI -- Transmitter Interrupt
A set bit indicates a packet was transmitted without errors. Cleared
when written with a one. Not reset.

2 RI -- Receiver Interrupt
A set bit indicates a packet was received without errors. Cleared
when written with a one. Not reset.

1 TE -- Transmitter Error
A set bit indicates a packet was transmitted which terminated with
an error. Cleared when written with a one. Not reset.

0 RE -- Receiver Error
A set bit indicates a packet has been received which terminated with
an error. Cleared when written with a one. Not reset.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-0 -- The two most significant bytes of the MAC address. Not reset.

MACMSB Address = 0x80000E08

31 16 15 0
RESERVED MAC Address [47:32]

Figure 114. Ethernet MAC Address MSB

154

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-0 -- The 4 least significant bytes of the MAC address. Not reset.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Data -- Contains data read during a read operation and data that is transmit-
ted is taken from this field. Not Reset.

15-11 PHY Address -- This field contains the address of the PHY that should be accessed
during a write or read operation. Not Reset.

10-5 Register Address -- This field contains the address of the register that should be accessed
during a write or read operation. Not Reset.

4 NV -- Not Valid
When an operation is finished (BU = 0) this bit indicates whether
valid data has been received that is, the data field contains correct
data. Not Reset.

0: Data field contains valid data
1: Data field contains invalid data

3 BU 0 Busy
When an operation is performed this bit is set to one. As soon as the
operation is finished and the management link is idle this bit is
cleared.

0: Management link idle
1: Management link active

2 LF -- Link Fail
When an operation completes (BU = 0) this bit is set if a functional
management link was not detected. Not Reset.

0: Functional management link detected
1: Functional management link not detected

MACLSB Address = 0x80000E0C

31 0
MAC Address [31:0]

Figure 115. Ethernet MAC Address LSB

ETHMDC Address = 0x80000E10

31 16 15 11 10 5 4 3 2 1 0
DATA PHY ADDRESS REGISTER ADDRESS NV BU LF RD WR

Figure 116. Ethernet MDIO Control and Status Register

 155

13.3.1 Vendor and device identifiers
The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x1D.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

1 RD 0 Read
Set to start a read operation from the management interface. Data is
stored in the Data field.

0 WR 0 Write
Set to start a write operation to the management interface. Data is
taken from the Data field.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-10 -- Base address of the Transmitter Descriptor Table. Not Reset.

9-3 RX_Descriptor_Poin
ter

This field is incremented by one each time a descriptor has been
used. It is automatically incremented by the Ethernet MAC.

2-0 Reserved 000b Read: 000b; Write=don’t care.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-10 Base address of the Receiver Descriptor Table. Not Reset.

9-3 TX_Descriptor_Pointer This field is incremented by one each time a descriptor has been
used. It is automatically incremented by the Ethernet MAC.

2-0 Reserved 000b Read: 000b; Write=don’t care.

ETHTDP Address = 0x80000E14

31 10 9 3 2 0
TRANSMITTER DESCRIPTOR TABLE BASE ADDRESS RX_DESCRIPTOR_POINTER RESERVED

Figure 117. Ethernet Transmitter Descriptor Pointer Register

ETHRDP Address = 0x80000E18

31 10 9 3 2 0
RECEIVER DESCRIPTOR TABLE BASE ADDRESS RX_DESCRIPTOR_POINTER RESERVED

Figure 118. Ethernet Receiver Descriptor Pointer Register

156

14.0 Hardware Debug Support

14.1 Introduction
To simplify debugging on target hardware, the LEON 3FT processor implements a debug mode during which the pipeline is
idle and the processor is controlled through a special debug interface. The LEON 3FT Debug Support Unit (DSU) is used to
control the processor during debug mode. The DSU acts as an AHB slave and can be accessed by any of the following AHB
masters: the debug UART, the JTAG port, the PCI port, or a SpaceWire link using RMAP.

14.2 Operation
Through the DSU AHB slave interface, the AHB masters listed above can access the processor registers and the contents of
the instruction trace buffer. The DSU control registers can be accessed at any time, while the processor registers, caches and
trace buffer can only be accessed when the processor has entered debug mode. In debug mode, the processor pipeline is held
and the processor state can be accessed by the DSU. Entering the debug mode can occur on the following events:

• Executing a breakpoint i.e. Trap Always instruction
• Integer unit hardware breakpoint/watchpoint hit (trap 0x0B)
• Rising edge of the external break signal (DSUBRE)
• Setting the Break-Now (BN) bit in the DSU Break and Single-Step Register
• A trap that would cause the processor to enter error mode
• Occurrence of any, or a selection of traps, as defined in the DSU Control Register
• After a single-step operation
• DSU breakpoint hit

Processor(s)
LEON 3FT

Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

SpaceWire

DEBUG HOST

RS232 JTAGPCI

Figure 119. LEON 3FT/DSU

 157

Debug mode can only be entered when the debug support unit is enabled by setting the DSUEN pin high. When debug mode
is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)
• An output signal (DSUACT) is asserted to indicate the debug state
• The timer unit is (optionally) stopped to freeze the LEON 3FT timers and watchdog

The instruction that caused the processor to enter debug mode is not executed and the processor state is kept unmodified.
Execution is resumed by clearing the BN bit in the DSU Control Register or by de-asserting DSUEN. The timer unit will be
re-enabled and execution will continue from the saved PC and nPC. Debug mode can also be entered after the processor has
entered error mode, for instance when an application has terminated and halted the processor. Error mode can be reset and
the processor restarted at any address.

When a processor is in debug mode, accesses to the ASI diagnostic area are forwarded to the IU, which performs accesses
with the ASI equal to value in the DSU ASI Diagnostic Register and address consisting of 20 least-significant bits of the
original address.

14.3 AHB Trace Buffer
The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data, and various control sig-
nals of the AHB bus are stored and can be read out for later analysis. The trace buffer is 128 bits wide and 256 lines deep.
The information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

Table 55. AHB Trace Buffer Data Allocation

BITS NAME DEFINITION

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

158

The trace buffer is enabled by setting the Enable (EN) bit in the AHB Trace Buffer Control Register. Each AHB transfer is
then stored in the buffer in a circular manner. The address to which the next transfer is written is held in the Trace Buffer
Index Register and is automatically incremented after each transfer. Tracing is stopped when the EN bit is cleared, or when
an AHB breakpoint is hit. Tracing is temporarily suspended when the processor enters debug mode. Neither the trace buffer
memory nor the breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.

14.4 Instruction trace buffer
The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruction trace buffer is
located in the processor and read out via the DSU. The trace buffer is 128 bits wide and 256 lines deep. The information
stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle instructions. Multi-
cycle instructions are entered two or three times in the trace buffer. For store instructions, bits 63:32 correspond to the store
address on the first entry and to the stored data on the second entry (and the third in case of an STD instruction). Bit 126 is
set on the second and third entry to indicate this. A double load (LDD) instruction is entered twice in the trace buffer with
bits 63:32 containing the loaded data. Multiply and divide instructions are entered twice, but only the last entry contains the
result. Bit 126 is set for the second entry. For FPU operation producing a double-precision result, the first entry puts the
most-significant 32 bits of the results in bits 63:32, while the second entry puts the least-significant 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the AHB Trace Buffer Control Register
can be read and written to, while the processor is in debug mode. During instruction tracing (processor in normal mode) the
trace buffer and the AHB Trace Buffer Control Register can not be accessed

14.5 DSU memory map
The DSU memory map can be seen in table 1.3 below. The base address is 0x90000000.

Table 56. Instruction Trace Buffer Data Allocation

BITS NAME DEFINITION

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-
cycle instruction (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are
always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error
mode

31:0 Opcode Instruction opcode

Table 57. DSU Memory Map

REGISTER ADDRESS

DSU Control Register 0x90000000

DSU Trace Buffer Time Tag Counter Register 0x90000008

DSU Break and Single-Step Register 0x90000020

 159

AHB Trace Buffer Control Register 0x90000040

AHB Trace Buffer Index Register 0x90000044

AHB Trace Buffer Breakpoint Address Register 1 0x90000050

AHB Trace Buffer Breakpoint Mask Register 1 0x90000054

AHB Trace Buffer Breakpoint Address Register 2 0x90000058

AHB Trace Buffer Breakpoint Mask Register 2 0x9000005c

Instruction Trace Buffer 0x90100000 - 0x90110000

Instruction Trace Buffer Control Register 0x90110000

AHB Trace Buffer 0x90200000 - 0x90210000

IU Register File 0x90300000 - 0x90300FFC

FPU Register File 0x90301000 - 0x9030107C

IU Special Purpose Registers 0x90400000 - 0x904FFFFC

Y Register 0x90400000

PSR Register 0x90400004

WIM Register 0x90400008

TBR Register 0x9040000C

PC Register 0x90400010

NPC Register 0x90400014

FSR Register 0x90400018

CPSR Register 0x9040001C

DSU Trap Register 0x90400020

DSU ASI Diagnostic Access Register 0x90400024

ASR16 - ASR31 (when implemented) 0x90400040 - 0x9040007C

ASI Diagnostic Access (ASI = value in DSU ASI register, address
= address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Instruction cache data

0x90700000 - 0x907FFFFC

Table 57. DSU Memory Map

REGISTER ADDRESS

160

The addresses of the IU registers are calculated as follows
• %on: 0x90300000 + (((psr.cwp * 64) + 32 + n*4) mod 128)
• %ln: 0x90300000 + (((psr.cwp * 64) + 64 + n*4) mod 128)
• %in: 0x90300000 + (((psr.cwp * 64) + 96 + n*4) mod 128)
• %gn: 0x90300000 + 128 + n*4
• %fn: 0x90301000 + n

14.6 DSU registers
14.6.1 DSU control register
The DSU is controlled by the DSU control register:
31 12 11 10 9 8 7 6 5 4 3 2 1 0

 RESERVED PW HL PE EB EE DM BZ BX BS BW BE TE

Figure 120. DSU Control Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-12 Reserved

11 PW Power Down
Returns ‘1’ when processor in power-down mode.

10 HL Processor Halt
Returns ‘1’ on read when processor is halted. If the processor is in
debug mode, setting this bit will put the processor in halt mode.

9 PE Processor Error Mode
Returns ‘1’ on read when processor is in error mode, else ‘0’. If
written with ‘1’, it will clear the error and halt mode.

8 EB Value of the external DSUBRE signal (read-only).

7 EE Value of the external DSUEN signal (read-only).

6 DM Debug Mode
Indicates when the processor has entered debug mode (read-only).

5 BZ Break on Error Traps
If set, will force the processor into debug mode on all except the
following traps: priviledged_instruction, fpu_disabled,
window_overflow, window_underflow, asynchronous_interrupt,
ticc_trap.

4 BX Break on Trap
If set, will force the processor into debug mode when any trap
occurs.

3 BS Break on Software Breakpoint
If set, debug mode will be forced when an breakpoint instruction (ta
1) is executed.

2 BW Break on IU Watchpoint
If set, debug mode will be forced on a IU watchpoint (trap 0xb).

 161

14.6.2 DSU break and single-step register
This register is used to break or single step the processor

14.6.3 DSU trap register
The DSU trap register is a read-only register that indicates which SPARC trap type that caused the processor to enter debug
mode. When debug mode is force by setting the BN bit in the DSU control register, the trap type will be 0xb (hardware
watchpoint trap).

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

1 BE Break on Error
If set, will force the processor to debug mode when the processor
would have entered error condition (trap in trap).

0 TE Trap Enable
Enables instruction tracing. If set the instructions will be stored in
the trace buffer. Remains set when then processor enters debug or
error mode.

31 17 16 15 0
RESERVED SS BN

Figure 121. DSU Break and Single-Step Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-17 Reserved

16 SS Single Step
If set, the processor will execute one instruction and return to debug
mode. The bit remains set after the processor goes into the debug
mode.

15-0 BN Break Now
Force the processor into debug mode if the Break on S/W break-
point (BS) bit in the processors DSU control register is set. If
cleared, the processor x will resume execution.

31 13 12 11 4 3 0
RESERVED EM TRAP TYPE 0000

Figure 122. DSU Trap Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-13 Reserved

12 EM Error Mode
Set if the trap would have cause the processor to enter error mode.

11-4 Trap Type 8-bit SPARC trap type.

3-0 Read=0000b; Write=don’t care.

162

14.6.4 DSU trace buffer time tag counter register
The trace buffer time tag counter increments each clock as long as the processor is running. The counter is stopped when the
processor enters debug mode and restarted when execution is resumed. The value is used as time tag in the instruction and
AHB trace buffer.

14.6.5 DSU ASI diagnostic access register
The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic access register is used as
ASI while the address is supplied from the DSU.

14.6.6 AHB trace buffer control register
The AHB trace buffer is controlled by the AHB Trace Buffer Control Register:

31 30 29 0
 00 DSU_TIME_TAG_VALUE

Figure 123. DSU Trace Buffer Time Tag Counter Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-30 Reserved Read = 00b; write = don’t care

29-0 DSU_TIME_TAG_VALUE

31 8 7 0
 RESERVED ASI

Figure 124. DSU ASI Diagnostic Access Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-8 Reserved

7-0 ASI ASI to be used on diagnostic ASI access.

31 16 15 8 7 4 3 2 1 0
 DCNT RESERVED RAM TIM. 00 DM EN

Figure 125. AHB Trace Buffer Control Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 DCNT Trace Buffer Delay Counter
The number of bits actually implemented depends on the size of the
trace buffer.

15-8 Reserved

7-4 RAM TIM Trace Buffer RAM Timing Registers
Used for test only, must always be written with “0000”.

3-2 Reserved Read=00b; Write=don’t care.

1 DM Delay Counter Mode
Indicates that the trace buffer is in delay counter mode.

 163

14.6.7 AHB trace buffer index register
The AHB trace buffer index register contains the address of the next trace line to be written.

14.6.8 AHB trace buffer breakpoint registers
The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to freeze the trace buffer
by automatically clearing the enable bit. Freezing can be delayed by programming the DCNT field in the trace buffer control
register to a non-zero value. In this case, the DCNT value will be decremented for each additional trace until it reaches zero,
after which the trace buffer is frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detection. To break
on AHB load or store accesses, the LD and/or ST bits should be set.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

0 EN Trace Buffer Enable
0: Disabled
1: Enabled

31 4 3 0
INDEX 0000

Figure 126. AHB Trace Buffer Index Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-4 INDEX Trace Buffer Index Counter
Note that the number of bits used depends on the size of the trace
buffer.

3-0 Read=0000b; Write=don’t care.

31 2 1 0
 BADDR[31:2] 0 0

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-2 BADDR[31:2] Breakpoint Address [31:2]

1-0 Reserved Read = 00b; write = don’t care

31 2 1 0
 BMASK[31:2] LD ST

Figure 127b. AHB Trace Buffer Breakpoint Mask Registers

Figure 127a. AHB Trace Buffer Breakpoint Address Registers

164

14.6.9 Instruction trace control register
The instruction trace control register contains a pointer that indicates the next line of the instruction trace buffer to be writ-
ten.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-2 BMASK[31:2] Breakpoint Mask

1 LD Break on data load address.

0 ST Break on data store address.

31 16 15 0
 RESERVED IT POINTER

Figure 128. Instruction Trace Control Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-16 Reserved

15-0 Instruction trace
pointer

Note that the number of bits actually implemented depends on the
size of the trace buffer.

 165

15.0 Serial Debug Link

15.1 Overview
The serial debug link consists of a UART connected to the AHB bus as a master as shown in the figure below. A simple
communication protocol is supported to transmit access parameters and data. Through the communication link, a read or
write transfer can be generated to any address on the AHB bus.

15.2 Operation
15.2.1 Transmission protocol
The debug UART supports simple protocol where commands consist of a control byte, followed by a 32-bit address, fol-
lowed by optional write data. a Write access does not return any response, while a read access returns only the read data.
Data is sent on 8-bit basis as shown below.

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

 Figure 129. Debug UART Block Diagram

Start D0 StopD6D5D4D3D2D1 D7

 Figure 130. Debug UART Data Frame

 Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

Read command

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16]

 Figure 131. Debug UART Commands

166

Block transfers can be performed be setting the length field to n-1, where n denotes the number of transferred words. For
write accesses, the control byte and address is sent once, followed by the number of data words to be written. The address is
automatically incremented after each data word. For read accesses, the control byte and address is sent once and the corre-
sponding number of data words is returned.

15.2.2 Baud rate generation
The debug UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is clocked by the sys-
tem clock and generates a UART tick each time it underflows. The scaler is reloaded with the value of the UART scaler
reload register after each underflow. The resulting UART tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done by searching for the shortest
period between two falling edges of the received data (corresponding to two bit periods). When three identical two-bit peri-
ods have been found, the corresponding scaler reload value is latched into the reload register, and the Baud Rate Lock (BL)
bit is set in the UART Control Register. If the BL bit is reset by software, the baud rate discovery process is restarted. The
baud rate discovery is also restarted when a ‘break’ or framing error is detected by the receiver, allowing the system to
change the baud rate from the external transmitter. For proper baud rate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending a break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler = (((system_clk*10)/(baudrate*8))-5)/10

15.3 Registers
The debug UART can be programmed through tree registers mapped into APB address space. 16.0 JTAG Debug Link

Table 58. Debug UART Register Addresses

REGISTER APB ADDRESS

AHB UART Status Register (SDLSTR) 0x80000704

AHB UART Control Register (SDLCTR) 0x80000708

AHB UART Scaler Register (SDLSCL) 0x8000070C

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-2 Reserved

1 BL Baud Rate Locked
This bit is automatically set when the baud rate is locked.

0 RE Receiver Enable
If set, both the transmitter and receiver are enabled.

SDLSTR Address = 0x80000704
31 2 1 0

RESERVED BL EN

Figure 132. AHB UART Control Register

 167

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-7 Reserved

1 TS Transmitter Shift Register Empty
Indicates that the transmitter shift register is empty.

0 DR Data Ready
Indicates that new data has been received by the AHB master inter-
face.

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

31-14 Reserved

13-0 SRV Scaler Reload Value
See Section 15.2.2. The optimum value is:
SCALER = (((SYSCLK*10)/baudrate*8))-5/10.

SDLCTR Address = 0x80000708

31 7 6 5 4 3 2 1 0
RESERVED FE OV TH TS DR

SDLSCL Address = 0x8000070C

31 14 13 0
 RESERVED SRV

Figure 134. AHB UART Scaler Reload Register

Figure 133. AHB UART Status Register

168

16.0 JTAG Debug Link

16.1 Overview
The JTAG debug interface provides access to the AMBA AHB bus through JTAG. The JTAG debug interface implements a
simple protocol that translates JTAG instructions to AHB transfers. Through this link, a read or write transfer can be gener-
ated to any address on the AHB bus.

16.2 Operation
16.2.1 Transmission protocol
The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the JTAG Debug Link Com-
mand and Address Register and Data Register. A read access is initiated by setting the Write bit, and the SIZE and
AHB_ADDRESS fields of the Command and Address Register and shifting out the data over the JTAG port. The AHB read
access is performed and data is ready to be shifted out of the Data Register. Write accesses are performed by setting the Write
bit, and the SIZE and AHB_ADDRESS fields of the Command and Address Register, followed by shifting in write data into
the Data Register. Sequential transfers can be performed by shifting in command and address for the transfer start address
and setting the SEQ bit in Data Register for subsequent accesses. The SEQ bit will increment the AHB address for the subse-
quent access. Sequential transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

34 33 32 31 0
W SIZE AHB_ADDRESS

Figure 136. JTAG Debug Link Command and Address Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

34 W Write
0: Read transfer
1: Write transfer

33-32 SIZE AHB Transfer Size
00: Byte
01: Half word
10: Word
11: Reserved

31-0 AHB_ADDRESS

Figure 135. JTAG Debug Link Block Diagram

AHB master interface

AMBA AHB

JTAG Communication
Interface

JTAG TAP
Controller

TCK
TMS

TDI

TDO

 169

16.3 Registers
The core does not implement any registers mapped in the AMBA AHB or APB address space.

16.4 Vendor and device identifiers
The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01C.

32 31 0
SQ AHB_DATA

Figure 137. JTAG Debug Link Data Register

BIT
NUMBER(S)

BIT NAME RESET
STATE

DESCRIPTION

32 SQ Sequential Transfer
0: Non-sequential transfer
1: When read data is shifted out or write data shifted in, the subse-
quent transfer will be to next word address.

31-0 AHB_DATA For byte and half-word transfers, data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB
bits.

170

17.0 CLKGATE Clock Gating Unit

17.1 Overview
The CLKGATE clock gating unit provides a mean to save power by disabling the clock to unused functional blocks. The unit
can enable and disable up to 64 individual clock signals, divided on 32 AHB clocks and 32 processor clocks,

17.2 Operation
The operation of the clock gating unit is controlled through three registers: the unlock, clock enable and core reset registers.
The clock enable register defines if a clock is enabled or disabled. A ‘1’ in a bit location will enable the corresponding clock,
while a ‘0’ will disable the clock. The core reset register allows to generate a reset signal for each generated clock. A reset
will be generated as long as the corresponding bit is set to ‘1’. The bits in clock enable and core reset registers can only be
written when the corresponding bit in the unlock register is 1. If the a bit in the unlock register is 0, the corresponding bits in
the clock enable and core reset registers cannot be written.

To gate the clock for a core, the following procedure should be applied:

1. Disable the core through software to make sure it does not initialize any AHB accesses

2. Write a 1 to the corresponding bit in the unlock register

3. Write a 0 to the corresponding bit in the clock enable register

4. Write a 0 to the corresponding bit in the unlock register

To enable the clock for a core, the following procedure should be applied

1. Write a 1 to the corresponding bit in the unlock register

2. Write a 1 to the corresponding bit in the core reset register

3. Write a 1 to the corresponding bit in the clock enable register

4. Write a 4 to the corresponding bit in the core reset register

5. Write a 0 to the corresponding bit in the unlock register

The cores connected to the clock gating unit are defined in the table below:

Table 60. Clocks Controlled by CLKGATE Unit

BIT FUNCTIONAL MODE
0 GRSPW Spacewire link 0
1 GRSPW Spacewire link 1
2 GRSPW Spacewire link 2
3 GRSPW Spacewire link 3
4 CAN core 1 & 2
5 GRETH 10/100 Mbit Ethernet MAC (AHB Clock)
6 GRPCI 32-bit PCI Bridge (AHB Clock)

 171

17.3 Registers
Table 61 shows the clock gating unit registers. The base address for the registers is 0x80000600.

Table 61. Clock Unit Control Registers

17.4 Vendor and device identifiers
The clock gating unit has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x02C.

APB ADDRESS FUNCTIONAL MODULE
RESET
VALUE

0x80000600 Unlock Register 0000000
0x80000604 Clock Enable Register 1111111
0x80000608 Core Reset Register 0000000

 172

COLORADO
Toll Free: 800-645-8862
Fax: 719-594-8468

SE AND MID-ATLANTIC
Tel: 321-951-4164
Fax: 321-951-4254

INTERNATIONAL
Tel: 805-778-9229
Fax: 805-778-1980

WEST COAST
Tel: 949-362-2260
Fax: 949-362-2266

NORTHEAST
Tel: 603-888-3975
Fax: 603-888-4585

CENTRAL
Tel: 719-594-8017
Fax: 719-594-8468

w w w . a e r o f l e x . c o m i n f o - a m s @ a e r o f l e x . c o m

Our passion for performance is defined by three
attributes represented by these three icons:

solution-minded, performance-driven and customer-focused

Aeroflex Colorado Springs, Inc., reserves the right to make
changes to any products and services herein at any time
without notice. Consult Aeroflex or an authorized sales
representative to verify that the information in this data sheet
is current before using this product. Aeroflex does not assume
any responsibility or liability arising out of the application or
use of any product or service described herein, except as
expressly agreed to in writing by Aeroflex; nor does the
purchase, lease, or use of a product or service from Aeroflex
convey a license under any patent rights, copyrights,
trademark rights, or any other of the intellectual rights of
Aeroflex or of third parties.

A e r o f l e x C o l o r a d o S p r i n g s - D a t a s h e e t D e f i n i t i o n

A d v a n c e d D a t a s h e e t - P r o d u c t I n D e v e l o p m e n t

P r e l i m i n a r y D a t a s h e e t - S h i p p i n g P r o t o t y p e

D a t a s h e e t - S h i p p i n g Q M L & R e d u c e d H i - R e l

