

Actel Space-Flight FPGAs Product Update and Roadmap

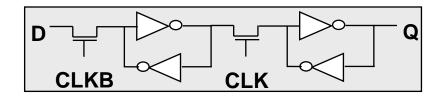
Ken O'Neill Director, High Reliability Product Marketing Minal Sawant Manager, High Reliability Product Marketing

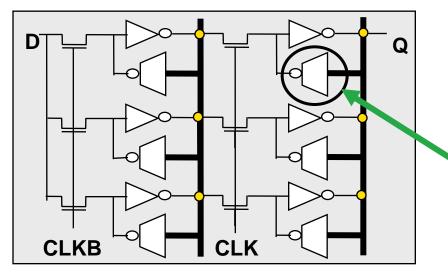
January 2010

Actel Corporation © Confidential 2010

Actel Company Overview

- Established FPGA Supplier
 - First FPGA shipped 1988
 - First space FPGA shipped 1992
 - \$218M in sales in 2008
 - More than 500 employees
 - World-class foundry partners
 - #1 flash FPGA supplier
 - #1 antifuse FPGA supplier
 - ~35% of revenue from FPGAs screened for Mil / Aero applications




SEU-Enhanced Flip-Flops

Foundation for RTSX-SU and RTAX family FPGAs

Standard Flip-flop

SEU-Enhanced Flip-flop

Actel Advantage 100% gate availability - no gate loss to TMR implementation Upsets due to single ion strike voted out by the unaffected latches Voting the feedback paths prevents the flip flop from changing state Transparent to user, no special skill or knowledge needed **Voter Gate**

- Two correct inputs outvote single incorrect input
- Self-corrects asynchronously

Screening Flows for Space-Flight FPGAs

Mil-Std 883 class B	Extended Flow	QML-V / EV Flow
Screening Process	Screening Process	Screening Process
Wafer Sort	Wafer Sort	Wafer Sort
Package Assembly (B flow)	Package Assembly (E flow)	Package Assembly (EV flow)
Bond Pull (Sample Pull Test)	Bond Pull (Extended Pull Test)	Bond Pull (Extended Pull Test)
Internal Visual (cond.B)	Internal Visual (cond.A)	Internal Visual (cond.A)
Serialization (RT parts only)	Pre-Cap Source Insp. (cond.A)	Pre-Cap Source Insp. (cond.A)
Temperature Cycling (10 cycles)	Serialization	Serialization
Constant Acceleration	Temperature Cycling (10 cycles)	Temperature Cycling (50 cycles)
PIND	Constant Acceleration	Constant Acceleration
Seal (Fine/Gross Leak Test)	PIND	PIND
Electrical Test	Seal (Fine/Gross Leak Test)	Seal (Fine/Gross Leak Test)
Dynamic Burn-in (160hrs @ 125°C)	X-Ray	X-Ray
Post-BI Test +25°C	Electrical Test	Electrical Test
Final Test -55°C	Dynamic Burn-in (240hrs @ 125°C)	Dynamic Burn-in (240hrs @ 125°C)
Final Test +125°C	Post-BI Test +25°C with R&R	Post-BI Test +25°C with R&R
QA Electrical (Group A)	Static Burn-in (144hrs @ 125°C)	Static Burn-in (144hrs @ 125°C)
Mechanical Visual	Post-BI Test +25°C with R&R	Post-BI Test +25°C with R&R
	Final Test -55°C	Final Test -55°C with R&R
	Final Test +125°C	Final Test +125°C with R&R
	Seal (Fine/Gross Leak Test)	Seal (Fine/Gross Leak Test)
	QA Electrical (Group A)	QA Electrical (Group A)
	Mechanical Visual	Mechanical Visual
Lot Acceptance Tests	Lot Acceptance Tests	Lot Acceptance Tests
Generic Group B	Lot Specific Group B with RGA	Lot Specific Group B with RGA
Generic Group C	Generic Group C	Wafer Lot Specific Group C
	Generic Group C	(2000 Hr HTOL)
Generic Group D	Generic Group D	Generic Group D
Generic Radiation Total Dose Report	Generic Radiation Total Dose Report	
		Lot Specific DPA (per Date Code)
		Data Package

Actel Corporation © Confidential 2010

RTSX-SU

Actel Corporation © Confidential 2010

RTSX-SU Family

RTSX-SU Features

- Designed specifically for Space Applications
- Up to 2,012 SEU Hardened Flip-Flops eliminate user-designed TMR
- Single Event Latch-up Immune
- Supports Hot-Swapping and Cold Sparing
- Configurable I/O support multiple 5.0V and 3.3V I/O standards
- Pin Compatible with commercial SX-A devices for easy prototyping

QML Certified Devices

- QML Class Q available today
 - Mil Std 883 Class B
 - Actel Extended flow
- QML Class V submission planned for 2010
- "EV" flow available today
 - All process steps of QML-V
 - 40-week lead time applies (2000 Hr Group C)

	RTSX32SU	RTSX72SU	
Dedicated Registers	1,080	2,012	
Total Modules	2,880	6,036	
Max User I/Os	227	360	
	84-CQFP		
	208-CQFP	208-CQFP	
Packages	256-CQFP	256-CQFP	
	256-CCLG		
		624-CCGA/LGA	
Manufacturing			
Process Flows			

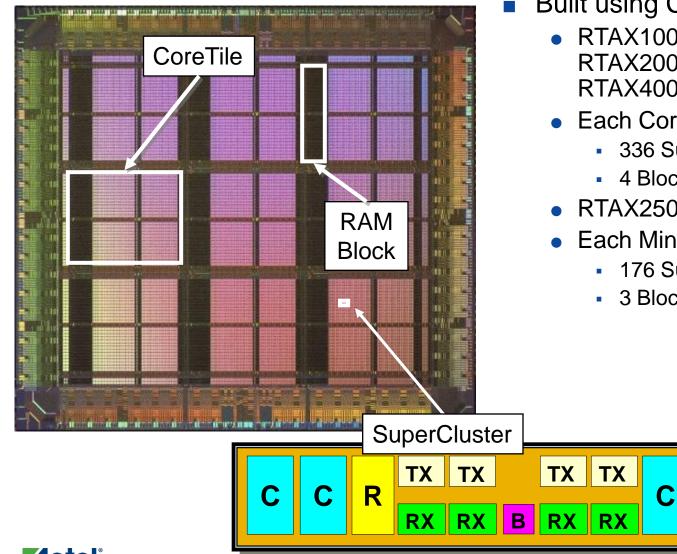
Success in Space – RTSX-SU

Mars Reconnaissance Orbiter Launched August 2005	GPS 2R-M (8 Satellites) Launched Sept 2005 to August 2009	Galileo GIOVE-A and GIOVE-B Launched Dec 2005 and April 2008	New Horizons Launched Jan 2006	SAR-Lupe 1 and SAR-Lupe 2 First Launch Dec 2006	TerraSar X Launched June 2007
Dawn Launched Sept 2007	GLAST Launched June 2008	Kepler Launched March 2009	GOCE Launched March 2009	Herschel Launched May 2009	Planck Launched May 2009

RTAX-S Designed for Space

RTAX-S/SL

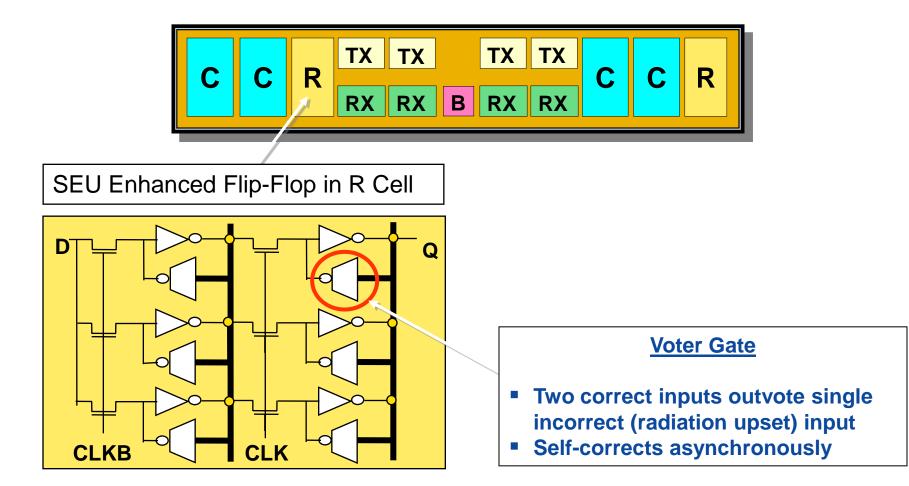
- Radiation-tolerant FPGA alternative to RH ASICs
 - Ten times larger than previous largest space FPGA
 - Up to 4M system gates approximately 500,000 ASIC gates
 - Designed for space Single Event Upset (SEU) enhancements
 - 0.15µm, 7-layer metal CMOS with Antifuse, manufactured at UMC
 - Embedded block RAM
 - Multiple Flexible I/O standards
 - Live at Power-up (LAPU)
 - Single chip
 - Low power consumption
- New developments
 - RTAX250S/SL in CG/LG624 package
 - RTAX4000SL low power version
 - RTAX4000S/SL in Dash-1 speed grade
 - Absolute Max T_J raised to 135 C


RTAX-S/SL FPGA Family

	RTAX250S/SL	RTAX1000S/SL	RTAX2000S/SL	RTAX4000S/SL
Dedicated Registers				
	1,408	6,048	10,752	20,160
I/O Registers	744	1,548	2,052	2,520
Total Modules	4,224	18,144	32,256	60,480
RAM Blocks	12	36	64	120
Total RAM Bits	54K	162K	288K	540K
Max User I/Os	248	516	684	840
Packages	208-CQFP 352-CQFP 624-CCGA/LGA	352-CQFP 624-CCGA/LGA	256-CQFP 352-CQFP 624-CCGA/LGA 1152-CCGA/LGA	352-CQFP 1272-CCGA/LGA
Status	QUALIFIED SILICON NOW SHIPPING!			

- Typical lead times:
 - 18 weeks B-flow, 50 units, CQFP or LGA packaging
 - 24 weeks E-flow, 50 units, CQFP or LGA packaging
 - 40 weeks EV-flow, 20 units, CQFP or LGA packaging (2000 Hr Group C life test)
 - CCGA takes 6 to 8 weeks longer to process
 - Preparation of export documentation may add additional lead time

RTAX-S Device Architecture


- Built using Core Tiles
 - RTAX1000S 3x3 Core Tiles RTAX2000S – 4x4 Core Tiles RTAX4000S – 6x5 Core Tiles
 - Each Core Tile has:
 - 336 SuperClusters
 - 4 Blocks of RAM
 - RTAX250S 2x2 Mini Core Tiles
 - Each Mini Core Tile has:
 - 176 SuperClusters
 - 3 Blocks of RAM

R

С

RTAX-S SuperCluster

RTAX-S Radiation Data

- Single-event Latch-up (SEL)
 - Testing performed up to LET 117 MeV-cm^{2/}mg (125°C)
 - No SEL observed; No control logic upset observed
- R-Cell Single-event Upset (SEU)
 - LET_{TH} in excess of 37 MeV-cm²/mg
 - Cross-section < 1E⁻⁹ cm²
 - SEU per R-Cell < 4E⁻¹¹ Errors/bit-day (worst case GEO)
- Memory SEU
 - SEU < 1E⁻¹⁰ upsets/bit-day (worst case GEO)
 - EDAC operational, background scrubbing at 2MHz
- Single-event Transient (SET)
 - High frequency testing to 150 MHz with NASA GSFC
 - Additional testing and analysis reported at Actel Space Forum <u>www.actel.com/asf</u>
- Total Ionizing Dose (TID)
 - Results indicate suitability for vast majority of space missions
 - Stays within parametric limits beyond 200Krads (si)
 - No functional failure up to 300Krads (si)
 - TID performed on each production wafer lot

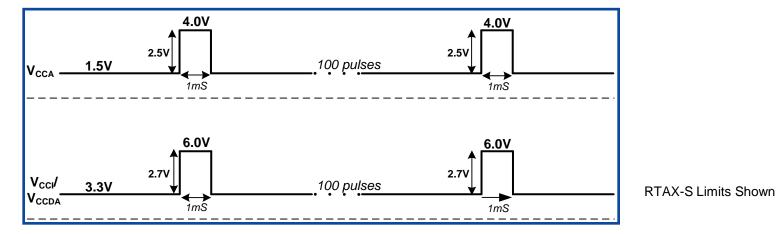
All reports posted to http://www.actel.com/products/milaero/hireldata.aspx

RT Timing Improvements

- RTAX-S TID timing derating BIG IMPROVEMENT!
 - Improvement based on accumulation of TID test data over 25 wafer lots

TID	Old Derating	New Derating	Improvement
100Krad	10%	3%	7%
200Krad	20%	4.5%	16%
300Krad	30%	6%	24%

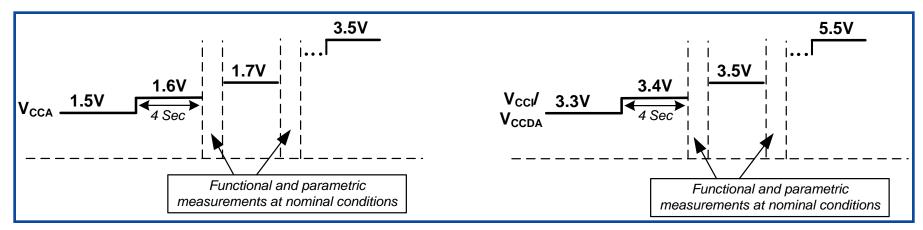
- Implemented in Actel Designer / Libero[®] Integrated Design Environment (IDE) software v8.3 (March 2008)
- Current datasheet has updated timing numbers
- Enhanced place-and-route results in improved timing for SRAM designs
 - Implemented in Actel Designer / Libero[®] Integrated Design Environment (IDE) software v8.5 SP1 (February 2009)
 - RTAX250S/SL, RTAX1000S/SL, RTAX2000S/SL
 - 5% average improvement
 - RTAX4000S/SL
 - 15% average improvement


RTAX-S Reliability Enhancements

- XY Wafer Location Programming
 - Wafer number and die location programmed into each unit during wafer sort
 - Assists with traceability and failure analysis
- Programming Software Revision Stamping
 - Silicon Sculptor Programming SW revision is programmed into device concurrent with customer design programming
 - Assists with traceability and failure analysis
- Thermal Runaway Characterization
 - Performed on each wafer lot (started with lots fabricated in 2007)
 - Two samples are programmed with ELA design and current is measured at junction temperature T_J of 140 C, 145 C, and 150 C
 - Lots exhibiting thermal runaway at T_J 150 C or lower are scrapped
 - Recommended maximum junction temperature T_J = 125 C
 - Absolute maximum junction temperature T_J = <u>135</u> C

Power Supply Transient Testing (1)

- RH regulators can sometimes exhibit Single Event Transient effects
 - Output voltage glitches to levels close to the unregulated supply voltage
 - Potential hazard for all devices powered by regulators
- Pulse testing of power supply transients on Actel FPGAs
 - Devices exposed to ~100 pulses of 1msec duration while operating
 - RTAX-S 26 devices / 2 lots
 - Pulse amplitude 2.5V above nominal 1.5V V_{CCA}, 4.0V total
 - Pulse amplitude 2.7V above nominal 3.3V V_{CCI}, 6.0V total
 - No damage observed, devices sampled from three wafer lots
 - RTSX-SU 27 devices / 3 lots
 - Pulse amplitude 3.0V above nominal 2.5V V_{CCA}, 5.5V total
 - Pulse amplitude 2.5V above nominal 5.0V V_{CCI}, 7.5V total
 - No damage observed, devices sampled from three wafer lots

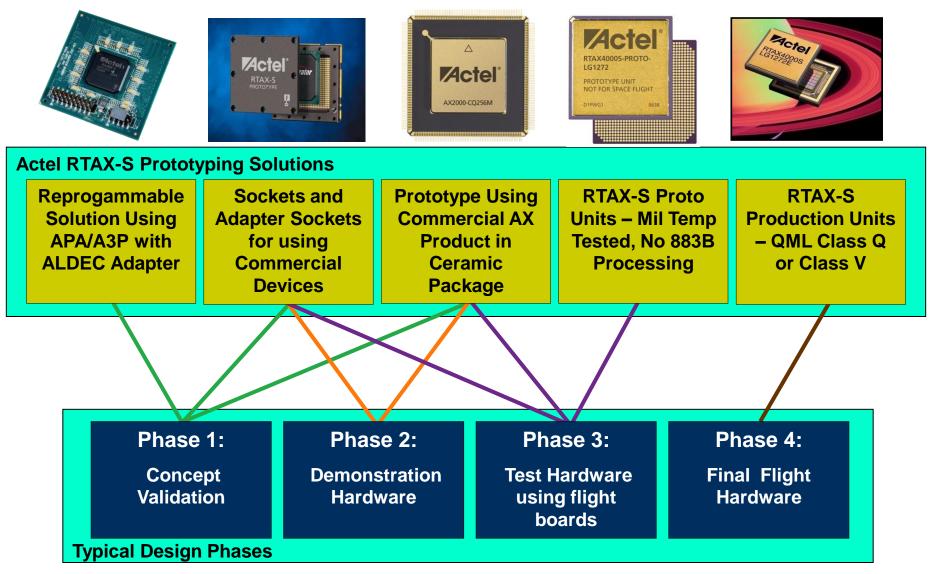


Actel Corporation © Confidential 2010

Power Supply Transient Testing (2)

- Static testing of power supply transients on Actel FPGAs
 - Devices exposed to increased V_{CC} levels for several seconds while operating
 - RTAX-S
 - No damage was observed until 3.5V above nominal 1.5V V_{CCA} ,5.0V total
 - No damage was observed at levels up to 2.2V above nominal 3.3V V_{CCI} , 5.85 total
 - RTSX-SU
 - No damage was observed at levels up to 2.0V above nominal 2.5V V_{CCA}, 4.5V total
 - No damage was observed at levels up to 1.5V above nominal 5.0V V_{CCI}, 6.5V total
- 1000 Hr HTOL confirmed no long-term reliability effects
- Detailed report is available from Actel
- Datasheet limits remain unchanged

RTAX-S Limits Shown



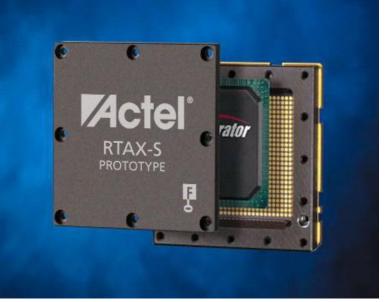
RTAX-SL Low Power Family

- New family
 - Reduced stand-by current
 - New part numbers
 - SMDs have been updated with new part numbers
 - RTAX250SL, RTAX1000SL, RTAX2000SL and now RTAX4000SL
- Stand-by current spec
 - Reduced by 70% to 80% relative to standard RTAX-S (worst case conditions)
 - For example RTAX2000SL spec is 150mA at 125 C
 - Dynamic current spec is unchanged
 - Device timing is unchanged
- Schedule
 - Open for orders NOW
 - Usual lead times will apply

Complete Development Solutions

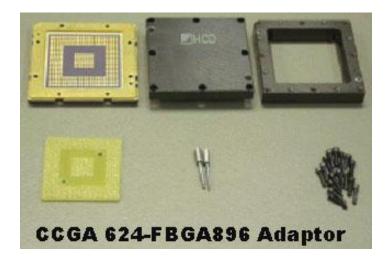
Reprogrammable Prototyping: ALDEC Adaptor

- Footprint-compatible with the RTAX-S/SL space-flight FPGA
 - CQ208, CQ256, CQ352 and CG624 footprints
- JTAG programming connector (JTAG) on the adaptor board
 - Reprogram the device on-the-fly on the target PCB
- EDIF Netlist converter ports from RTAX-S/SL to ProASIC3
 - Primitives and memories
 - Automatic pin remapping



Leads that mimic

RTAX-S Prototyping with Actel Axcelerator

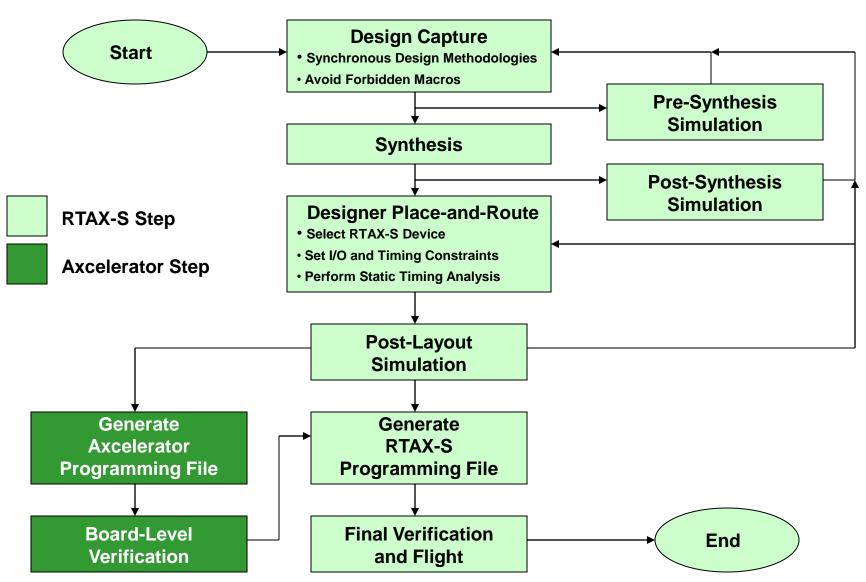

Low Cost Prototyping solution available NOW!

- Allows design activity to start immediately
- Uses commercial Axcelerator (AX) silicon in FG896 package for functional verification
- FG896 CQ352 adaptor
 - Matches CQ352 PCB footprint
- FG896 CG624 adaptor
 - Matches CG624 PCB footprint
- FG896 CQ256 adaptor
 - Matches CQ256 PCB footprint, for RTAX2000S-CQ256
- CQ208 can be prototyped with commercial PQ208 AX FPGAs
- CG1152 can be prototyped with commercial FG1152 AX FPGAs



RTAX-S Low Cost Prototyping Solutions

- Low cost prototyping solution
- CCGA and CQFP footprints available
- CCGA adaptor uses solder balls (not columns)
 - Eliminates costly column attach
 - Requires no re-layout



Fully Assembled CCGA 624-FBGA896 Adaptor

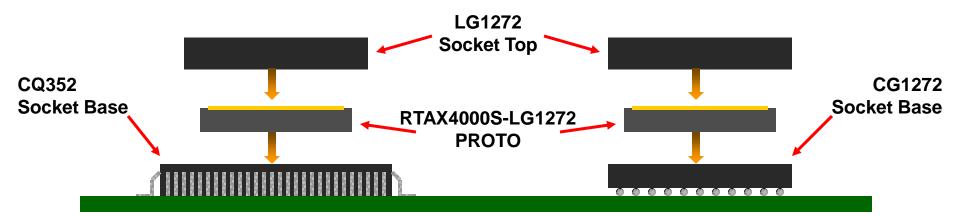
RTAX-S Prototyping Flow

Final Verification with RT Silicon

Introducing low-cost RT devices for final timing verification

RT-proto FPGAs

- RTSX-SU and RTAX-S prototypes
- RT die, in cost-reduced packages
 - Identical timing and functionality to space-flight RTSX-SU and RTAX-S FPGAs
 - Military temperature testing
 - No Mil-Std 883B processing
 - Non-hermetic lids
 - Lid dimpled to deter counterfeiting
 - <u>Not suitable for space-flight</u> devices marked to indicate this
 - <u>Not intended for qualification of space-flight hardware</u>
- Open for orders NOW
- Shipments NOW (lead time applies)



RTAX4000S Proto Socket

Enhanced prototyping for RTAX4000S

- Today's only solution is to use RTAX4000S-PROTO
 - Great for late prototyping and final timing verification
 - Not so good for early prototyping
 - Successive design changes require PROTO part to be desoldered and a replacement PROTO part to be soldered to target board
 - Jeopardizes integrity of board, populated with very expensive RT parts
- Actel now offers a socket to permit easy replacement of RTAX4000S-PROTO devices during early prototyping

RTAX-S Qualification Update

RTAX-S Qualification

- Mil-Std 883B Qualification Completed June 2005
 - DSCC released and certified QML-Q SMDs April 2006
 - RTAX-S devices can be ordered to the DSCC SMD "5962" number
- QML Class V Qualification in Progress
 - RTAX4000S is qualification vehicle
 - Completed 6000 hours Group C HTOL Oct 2008, 75 units, no silicon failures
 - One packaging anomaly related to gross leak test
 - Hoping for full QML-V certification 2010
- Enhanced Antifuse Qualification (EAQ)
 - Uses design with high observability of timing changes
 - Detects weak or misformed antifuses, learned from MEC RTSX-S investigation
 - 120 units RTAX1000S-CG624 tested
 - <u>6000 hours</u> HTOL completed
 - 250 hours LTOL completed
- Additional Engineering Testing
 - HTOL 1000 Hrs, 125°C, 173 units
 - LTOL 1000 Hrs, -55°C, 77 units
- No antifuse failures observed in testing to date
 - Overall product FIT rate calculated < 11 FIT (60% confidence level, EA = 0.7eV)

RTAX-S Independent Reliability Testing

- Aerospace Corporation testing (AX)
 - Running since 2007
 - Some parts > 21,000 hours HTOL
 - > 14M device-hours so far
 - One failure (SRAM) under investigation: suspect contact processing issue (these are not Mil-Std 883B parts)
 - No antifuse anomalies

	Devices	Device-Hours
AX2000 HTO		5,733,534
AX2000 LTO	L 274	4,835,585
AX2000 TC	189	3,453,520
Tota	1	14,022,639

NASA GSFC

- Testing completed July 2009
- 6,000 hours total per device
- Almost 1M device-hours
- No anomalies

	Hours	Devices	Device-Hours
RTAX250S HTOL	3,000	82	246,000
RTAX250S LTOL	3,000	82	246,000
RTAX2000S HTOL	3,000	82	246,000
RTAX2000S LTOL	3,000	82	246,000
Total			984,000

Actel RTAX-S Class V Plan

Seeking QML-V certification

- Certifying authorities have started certification activities
- Hoping for QML class V certification in 2010
- Class V process flow has been established ("EV")
 - Complies with current rev of MIL-PRF-38535 (Rev H)
 - Wafer lot specific Group C life test
 - 100% Pre-Cap Source Inspection
 - Lot-specific DPA
 - Tri-temp read and record pre- and post-burn-in

"EV" class V flow available NOW!

- Prior to official class V certification
- Expect no silicon or process differences between Actel "EV" and official QML class V devices
- Open for order entry NOW
- NOTE: Actel has no plans to discontinue existing B-flow or E-flow

IP for Space Applications

- Gaisler Leon3-FT
 - Building flight and design-in heritage SIR-2 (Norway) on Chandrayaan-1(India) – <u>IN FLIGHT</u> Argo (Taiwan) Prisma (Sweden) Bepi Colombo (ESA) MMS (USA) Orbcomm (USA) RBSP (USA) Tacsat-4 (USA)
 - 32-bit, SEE immune, 25 DMIPs at 25 MHz in RTAX-S
- Gaisler Spacewire
 - 100Mb/sec or higher in RTAX-S across T and V range
- Actel Mil-Std 1553B
 - Bus Controller (BC), Remote Terminal (RT), Monitor Terminal (MT)
 - Can be supplied as netlist or as RTL
 - Includes full test bench
 - Certified per RT valiation test plan Mil-Hdbk-1553 Appendix A

Flight Heritage – IP Cores

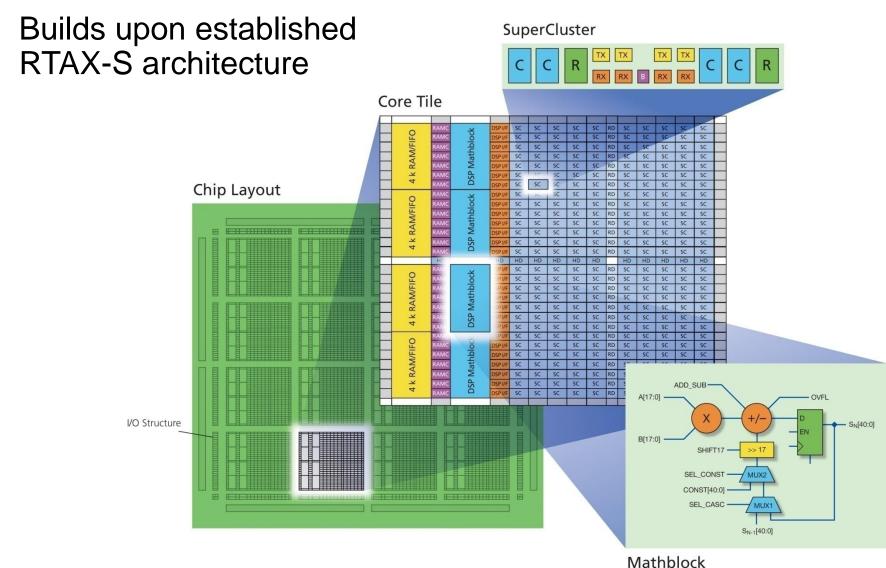
RTAX-S Now in Space!

Planning to Fly RTAX-S

Galileo	Advanced EHF	NPOESS	MUOS	GOES-R	COSMO SkyMed 4
cq352	CQ352	CG1152 - 6Σ	CG624 - BAE	CQ352 CG624 - BAE	CQ352
Proba 2	Magneto- spheric MultiScale	Mars Science Lab	Bepi Colombo	Gaia	James Webb Space Telescope
CG624 - 6Σ CG624 - BAE	CQ208 CQ352 CG624 - 6Σ	CG624 - 6Σ	CQ208 CQ256 CQ352		CQ352

Introducing RTAX-DSP

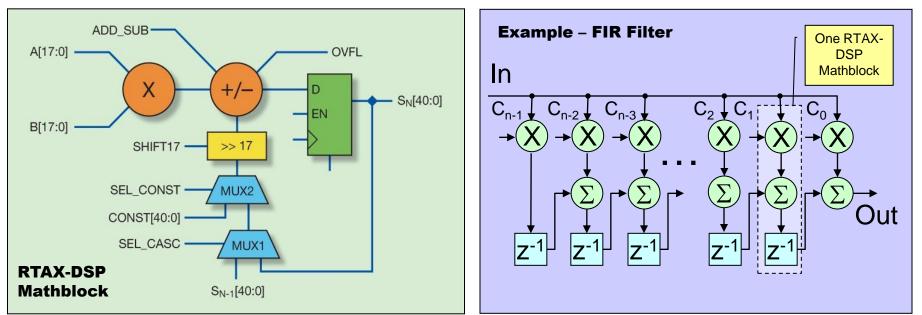
Industry's Most Reliable Space FPGAs Add Sophisticated DSP Capabilities


Actel Corporation © Confidential 2010

RTAX-DSP – Fast DSP Without Sacrificing Reliability

- High performance DSP
 - RTAX-DSP Mathblocks run 18bit x 18bit multiply-accumulate at 125MHz over full military temperature range (-55 C to 125 C)
- True radiation tolerance
 - Configuration is not upset or changed by heavy ion radiation
 - DSP blocks protected against heavy ion radiation effects
- Lower power
 - Fewer parts to get the job done means lower power consumption
- Proven reliability
 - RTAX-DSP uses same 0.15µm UMC process, same antifuse programming technology, same basic architecture as RTAX-S/SL
 - Reliability and radiation characteristics expected to be identical
- No cost or schedule risk
 - No ASIC tooling charge (or repeat charge, if design changes are made)

RTAX-DSP Architecture Overview



Actel Corporation © Confidential 2010

RTAX-DSP Mathblocks

Flexible, Cascadable, High-Performance Structure

- 18bit X 18bit multiplier
 - Can be fractured into two 9bit X 9bit multipliers
- Add / subtract accumulate function
 - Combine the current multiplication product with a prior product, a constant, or with the result from another multiplier
 - Important in FIR, IIR digital filters and FFT

RTAX-DSP Highlights

- High Signal Processing Throughput
 - Up to 120 Mathblocks per device; 125 MHz operation, even at 125 C
 - 15 Billion multiply-accumulates / second (15 GMAC)
- Built-in Radiation Hardening in Mathblock
 - Single Event Transient (SET) protection in combinatorial logic
 - Single Event Upset (SEU) protection in sequential logic
- Availability
 - Software available NOW
 - Prototype units available NOW (RTAX4000D-CQ352)
 - Qualification complete 2H2010 (B, E, EV)

	RTAX250S/SL	RTAX1000S/SL	RTAX2000S/SL	RTAX2000D	RTAX4000S/SL	RTAX4000D
System Gates	250k	1M	2M	2M	4M	4M
Dedicated Registers	1,408	6,048	10,752	9,856	20,160	18,480
Total RAM Bits	54K	162K	288K	288K	540K	540K
DSP Mathblocks				64		120
Clocks	8	8	8	8	8	8
Maximum I/O	248	516	684	684	840	840
Packages						
CQFP	208, 352	352	352	352	352	352
CCGA / LGA	624	624	624, 1152	1272	1272	1272

IP and Tools

- Smart Gen Mathblock configurator
 - User interface allowing precise configuration of Mathblock
 - Mathblock macro IP cores available now
 - Multiply, Multiply and Add / Subtract, Multiply and Accumulate
- RTAX-DSP Actel IP
 - CoreFIR 4.0 for RTAX-DSP available now
 - Parameterizable single rate fully enumerated FIR filter
 - SmartDesign RTL generator using on-chip math blocks
 - CoreFFT 4.0 Radix-2 Fast Fourier Tranform will be next
 - Additional DSP cores to follow

ІР Туре	Schedule
Fully enumerated FIR filter	NOW
Radix-2 FFT	1Q2010
Folded FIR filter	3Q2010
Interpolation polyphase FIR filter	4Q2010
Decimation polyphase FIR filter	1Q2011

SmartGen Configuration 1 SgHardMult

IP Config	guring SgHardMu	lt_0 (v. 0.1.12)	_	
Configura	ation			
	nput Port A			
	Use Constant			
	Constant Value (H	ex) 0x1		
	Width	18		
	Register Port			
	nput Port B			
	Width	18		
	Register Port			
_ C	Output Port P			
	Regi	ster Port		
Г	arget FPGA			
	Die:	RTAX2000D 💌		
		0	K Ca	ncel

SmartGen Configuration 2 SgHardMultAddSub

P Configuring SgHardMult	AddSub_0 (v. 0.1.20)				
Configuration					
Function	Multiplier with Adder		guring SgHardMu	ultAddSub_0 (v. 0.1.20)	
- Input Port A		Configura	ation		
Use Con	stant t Value (Hex) 0×1		nction nput Port A	Multiplier with Adder Multiplier with Adder Mutiplier with Subtractor Multiplier with Adder/Subtractor	
Width	18				
Register	Port				
Input Port B Wide Reg	th 18				
Input Ports CIN/CDIN/CD	SEL				
Input Source(s)	Routed from Fabric	Input Por	ts CIN/CDIN/CD	DSEL	
Constant Value (Hex)) 0x0	Input	t Source(s)	Routed from Fabric	~
CIN Width	41	po		Routed from Fabric	
CDIN Width	41			Constant Hardwired from Previous Math Block	
Register CDSEL Port				Hardwired from Previous Math Block and Routed Hardwired from Previous Math Block and Constant	
Output Port P					
	Register Port				
- Input Port SUB					
	Register Port				
- Target FPGA					
	Die: RTAX2000D 💌				
		ncel			

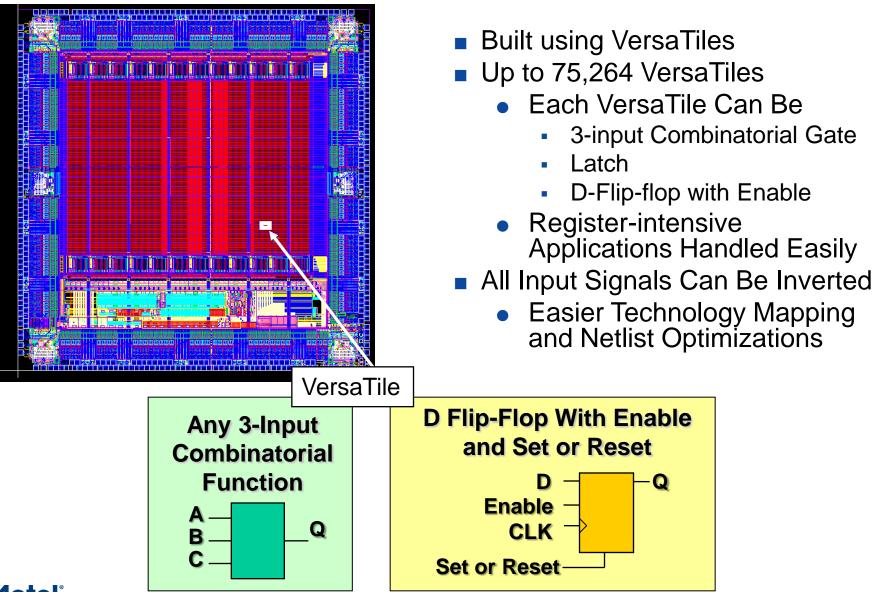
SmartGen Configuration 3 SgHardMultAcc

P Configuring SgHardMultAcc_0 (v. 0.1.3)	
Configuration	P Configuring SgHardMultAcc_0 (v. 0.1.3)
Function Multiplier Accumulator (Adder)	
Input Port A	Configuration
Use Constant	Function Loadable Multiplier Accumulator (Subtractor)
Constant Value 0×1	Multiplier Accumulator (Adder)
Width 18	Multiplier Accumulator (Adder/Subtractor) Loadable Multiplier Accumulator (Adder)
Register Port	Loadable Multiplier Accumulator (Subtractor) Loadable Multiplier Accumulator (Adder/Subtractor)
Input Port B	
Width 18	
Register Port	
Input Ports SLOAD_DATA/SLOAD	
Use Constant	
Constant Value (Hex) 0x0	
SLOAD_DATA Width 41	
Register SLOAD Port	
Input Port SUB	
Register Port	
Target FPGA	
Die: RTAX2000D 🔽	
OK Cancel	

Introducing RT ProASIC3: Flash FPGAs for Space

Reprogrammable RT ProASIC®3 Devices Simplify Design of Space Systems

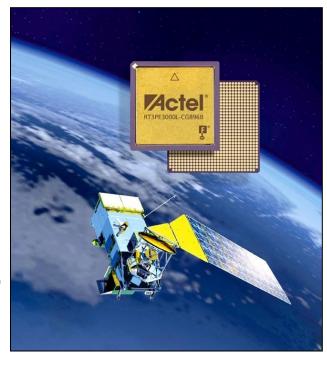
Actel Corporation © Confidential 2010


Low Power, Reprogrammable Space-Flight FPGAs

The Desire for Reprogrammability

- Eliminates inconvenient prototyping steps
 - No need to convert from reprogrammable prototyping architecture to ASIC or one-time programmable architecture for flight
 - Allows early hardware timing validation, with no architecture re-targeting
 - In-system reprogrammable on prototyping board
 - Does not jeopardize integrity of expensive prototyping board
- Permits in-use (ie, on-orbit) reconfiguration
 - Extend mission life by updating algorithms or control functions
- Advantages of Flash FPGAs over SRAM FPGAs
 - Both flash- and SRAM-based FPGAs are reprogrammable
 - Flash FPGAs retain their configuration in heavy ion radiation
 - SRAM FPGAs lose their configuration in heavy ion radiation
 - Require triple-chip redundancy
 - Expensive, consumes excessive power and board space

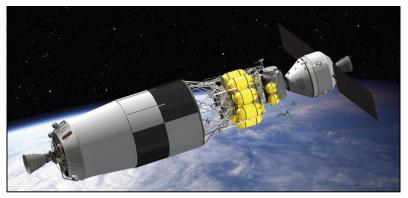
RT ProASIC3 Device Architecture


RT ProASIC3 Highlights

Flexible Power Supply Voltage

- V_{CCA} nominal from 1.2V to 1.5V
- Choose lower V_{CCA} for power saving
- Choose higher V_{CCA} for higher performance
- Flash*Freeze Ultra Low-Power Mode
 - Flash*Freeze mode entry / exit in < 1µsec
 - Static power < 0.55mW (RT3PE600L, 25 C)
 - Preserves register states

Qualification and Screening


- Mil Std 883 Class B only
 - Higher screening levels will be considered on a major opportunity basis

RT ProASIC3 Radiation Effects and Mitigation

- No Single Event Latch-up > 96 MeV-cm²/mg LET
- No flash cell configuration upset > 96 MeV-cm²/mg LET
- Single Event Upsets and Single Event Transients
 - Flip Flop upsets without TMR mitigation
 - Onset LET_{TH} ~ 1.5 MeV-cm²/mg
 - Flip Flops do not upset with TMR mitigation
 - Synplicity synthesis has optional TMR mitigation
 - Memory upsets use EDAC or redundancy if memory protection is needed
 - Onset LET_{TH} ~ 0.5 MeV-cm²/mg
 - Other SEEs
 - Clock upsets, Logic transients, I/O bank transients
 - If mitigation is required, use manual instantiation initially
 - We will assess feasibility of automated mitigation if applications require it
- Total Ionizing Dose (TID)
 - 10% propagation delay degradation
 - 20 to 25 krad (V_{CCA} = 1.5V)
 - 15 to 20 krad (V_{CCA} = 1.2V)
 - Programming functionality
 - 15 krad
- Well suited to Low Earth Orbit (LEO) and short duration missions

	FF SEU (No TMR, Errors/bit-day)	FF SEU (TMR, Errors/bit-day)	Logic Cell SET (Errors/bit-day)	I/O SET (Errors/bit-day)	I/O Bank SET (Errors/bit-day)
Op Frequency	50 MHz	50 MHz	Max	50 MHz	50 MHz
Solar Max	4.82 E-8		1.79 E-9	4.55 E-9	1.77 E-7
Solar Min	2.65 E-7	SEU Immune	1.45 E-8	3.29 E-8	1.02 E-6
Worst Week	5.73 E-5		4.22 E-6	8.09 E-6	2.31 E-4
Worst Day	2.08 E-4		1.44 E-5	2.76 E-5	8.27 E-4

GEO: 100mil; Z=2; no Funneling

RT ProASIC3 Summary

	RT3PE600L	RT3PE3000L
System Gates	600K	3M
Tiles	13,824	75,264
Total RAM bits	108k	504k
Flash (ROM) bits	1K	1K
PLLs	6	6
Globals	18	18
Maximum I/O	270	620
Package		
CCGA / LGA	484	484, 896
CQFP	256	256

Prototype CCGAs with low-cost commercial ProASIC3 FBGA devices

August 2010

4Q2010

- Identical silicon, identical timing
- Availability
 - Software available NOW
 - Commercial ProASIC3 available NOW
 - RT3PE3000L-CG896B July 2010
 - RT3PE3000L-CG484B
 - RT3PE600L-CG484B October 2010
 - RT3PE3000L-CQ256B 4Q2010
 - RT3PE600L-CQ256B

Space-Flight FPGA Roadmap

Roadmap for Space-Flight FPGAs

Rad Tolerant Flash

RTAX-DSP

RT ProASIC3

RTAX-SL

RTAX-S

Class V Flow

2013

RT-G4

Flash Product Plan

RT-Fusion (AFRL funding)

- Combines Flash-based digital FPGA fabric with analog functions
- Radiation testing started September 2008, continuing currently
- Plan will be announced when radiation effects are fully understood

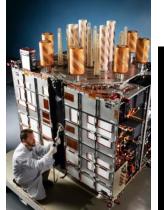
RT-G4 (DTRA Funding)

- In architecture concept phase
- Expect flight units 2012
- Target TID to 300 Krad
- 5M to 10M system gates
- Designed for payload signal processing
 - Many hundreds of embedded multiply-accumulate blocks
 - Multiple Tbit/sec of signal processing
 - Multiple Mbits of embedded SRAM

Conclusion

Actel Corporation © Confidential 2010

Actel Space Heritage... Second to None!


Launchers / Missiles

Delta IV Sea Launch VLS MinuteMan III THAAD Pegasus Arianne Y H-2A D5 ENTB Patriot Atlas II, V

Actel

Commercial Globalstar Anik F2 Intelsat IX GE-1.2...18 Echostar Telstar Radarsat I. II CRSS / IKONOS OrbView IndoStar QuickBird Hispasat Astra WorldStar Orion 2 KompSa Orbcom PanAmSat

Military

MightySat P81 (Classified) P59 (Classified) HESSI Clementine SBIRS AEHF Myter Joint GeoLite WarFighter 1 TSX-5 MTI STEP STSS Midcourse Space Exp NPP / NPOESS GPS MUOS

International EnviSat Cluster II METOP Rosetta Champollion Stentor Yamal 100 SAC Sicral ACeS L-Star SOHO SILEX Integral Int'l Space Station MDS N-Star MTSat ETS VII JEM ADEOS II OICETS DRTS

Civilian / Scientific

Deep Space I Mars Pathfinder, Surveyor Mars MER1 and 2, MRO Mars: MSL Contours Seawinds SIRTF Messenger Lunar Prospector GALEX GIFTS TIROS Landsat VII EOS-AM1, Chem1, PM1 Cassini TDRS Space Shuttle Hubble Space Telescope Windsat GOES AXAF TRMM XTE

ACE SMEX MIDEX GLAS NEAR Timed FUSE Genesis

Summary

- Actel is committed to supporting Military and Aerospace
- Bringing added value to Space designers
 - Higher density
 - More features
 - Simplified board design
 - Single-chip
 - Live at power-up
 - Free from configuration radiation effects
 - Non-volatile AND reprogrammable
- Future products extend these benefits

Actel Space Forum

- Detailed discussions on
 - Product roadmap
 - Design tips and tricks
 - Qualification and reliability updates
 - Radiation testing results and mitigation strategies
 - Package development and roadmap
 - Development and verification tools
 - Partner presentations (tools, IP, complementary devices)
 - Executive keynote address
- Available for download at <u>www.actel.com/asf</u>

